
Chapter 1
Robot Learning for Persistent Autonomy

Petar Kormushev and Seyed Reza Ahmadzadeh

Abstract Autonomous robots are not very good at being autonomous. They work
well in structured environments, but fail quickly in the real world facing uncer-
tainty and dynamically changing conditions. In this chapter, we describe robot learn-
ing approaches that help to elevate robot autonomy to the next level, the so-called
‘persistent autonomy’. For a robot to be ‘persistently autonomous’ means to be able
to perform missions over extended time periods (e.g. days or months) in dynamic,
uncertain environments without need for human assistance. In particular, persistent
autonomy is extremely important for robots in difficult-to-reach environments such
as underwater, rescue, and space robotics. There are many facets of persistent auton-
omy, such as: coping with uncertainty, reacting to changing conditions, disturbance
rejection, fault tolerance, energy efficiency and so on. This chapter presents a collec-
tion of robot learning approaches that addressmany of these facets. Experiments with
robot manipulators and autonomous underwater vehicles demonstrate the usefulness
of these learning approaches in real world scenarios.

1.1 Persistent Autonomy

While humans and animals can perform effortlessly complicated tasks in unknown
environments, our human-built robots are not very good at being similarly indepen-
dent. Operating in real environments, they easily get stuck, often ask for help, and
generally succeed only when attempting simple tasks in well-known situations. We
would like autonomous robots to be much better at being autonomous for longer
stretches of time (persistent autonomy), and to be able to carry out more complicated
tasks without getting stuck, lost or confused.

P. Kormushev (B)
Dyson School of Design Engineering, Imperial College London, London SW7 2AZ, UK
e-mail: p.kormushev@imperial.ac.uk

S.R. Ahmadzadeh
iCub Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
e-mail: reza.ahmadzadeh@iit.it

© Springer International Publishing Switzerland 2015
L. Buşoniu and L. Tamás (eds.), Handling Uncertainty and Networked
Structure in Robot Control, Studies in Systems, Decision and Control 42,
DOI 10.1007/978-3-319-26327-4_1

3



4 P. Kormushev and S.R. Ahmadzadeh

Real environments are hard to operate in because they are not completely known,
because they change, and because they are complicated. In addition, sensors used to
perceive real environments and to self-locate often produce data that are noisy and
incomplete. As a result, the effects of actions taken by the robot are not deterministic,
but uncertain.

From the moment of birth, humans and animals are good at dealing with such
uncertainties. They operate persistently and successfully because they continually
observe the effects of their actions, and learn from the outcomes of their attempts to
do things. They use these observations to continually change what they know about
the world, and then to adapt the ways they move, and to evaluate and perhaps change
the strategies, plans and purpose that direct their being.

In this chapter, we describe and evaluate new computational methods that can
equip human-built autonomous robots with some of these fundamental capabilities
essential for persistent and successful autonomy.

1.2 Robot Learning Architecture

Before going into specific details about learning methods, it is useful to have a more
abstract computational architecture for autonomous robots. Figure1.1 outlines such
an architecture designed for development and study of persistent autonomy. A key
notion is that the robot’s response to changes in the environment takes place at one
of a number of hierarchical levels.

Four levels are recognized, each of them taking place at a different time scale.
Starting from the smallest timescale (0.001–0.1 s) to the biggest one (hours–days),
these levels are the following: Execution, Operational, Tactical, and Strategic.

The lowest level is theExecution level, inwhich the robot hardware (e.g. actuators)
physically execute the commands from the upper levels. The embedded controllers,
usually programmed in DSP chips, have the highest control frequency on the order
of 1kHz.

At the Operational level, sensor data is processed in the Perception block to
remove noise, extract and track features, localize the robot, in turn providing mea-
surement values for Robust Control of body axes, contact forces/torques and relative
positions.

At the Tactical Level, a status assessment is being performed using information
from around the robot in combination with expectations of planned actions, world
model and observed features to determine if actions are proceeding satisfactorily,
or have failed. Alongside this, reinforcement and imitation learning techniques are
used to train the robot to execute set pre-determined tasks, providing reference values
to controllers. Fed by measurement values from the Perception block, they update
controller reference values when disturbance or poor control causes action failure.

Finally, at the Strategic level, sensor features and state information are matched
with geometric data about the environment to update a geometric world model.
These updates include making semantic assertions about the task, and the world



1 Robot Learning for Persistent Autonomy 5

Fig. 1.1 A high-level diagram illustrating an example architecture for persistent autonomy based
on robot learning. It shows how learning can be integrated with the robot controller and planner.
The purpose of this computational architecture is to develop and study persistent autonomy.

geometry, and using reasoning to propagate the implications of these through the
world description. The Planning uses both semantic and geometric information as
pre-conditions on possible actions or action sequences that can be executed. When
State Estimation detects failure of an action, the Planner instigates possibilities for
a plan repair.

1.3 Learning of Reactive Behavior

One of the most challenging tasks for autonomous robots is the autonomous manip-
ulation of objects in unstructured environment. This is difficult due to the presence
of active disturbances and uncertainties at many levels. A typical example for such a
task is the autonomous robotics valve turning task. It is not surprising that this task
was also included in the DARPA Robotics Challenge in 2015—an event where the



6 P. Kormushev and S.R. Ahmadzadeh

best humanoid robots in the world competed for successful completion of a series of
challenging tasks. In this section we explain how robot learning can be used to learn
reactive behaviors, and in particular how this can be applied to the valve turning task.

1.3.1 Autonomous Robotic Valve Turning

Autonomous robotic valve turning is a challenging task especially in unstructured
environments with increased level of uncertainty (e.g. in disaster response setting, or
in underwater or aerial applications). The existing disturbances in the environment
or the noise in the sensors can endanger both the robot and the valve during the oper-
ation. For instance, the vision system may be occluded and thus introduce a delay in
updating the data, or even provide the systemwith wrong information. Exerting huge
forces/torques on the valve by the robot, is another hazardous and highly probable
situation. In such cases an autonomous system that is capable of observing the cur-
rent state of the system and reacting accordingly, can help to accomplish the mission
successfully even in the presence of noise.

The learning approach described here is very helpful for coping with the chal-
lenges of autonomous robotic valve turning in the presence of active disturbances
and uncertainties. The valve turning task comprises two phases: reaching and turn-
ing. For the reaching phase the manipulator learns how to generate trajectories to
reach or retract from the target. The learning is based on a set of trajectories demon-
strated in advance by the operator. The turning phase is accomplished using a hybrid
force/motion control strategy. Furthermore, a reactive decision making system is
devised to react to the disturbances and uncertainties arising during the valve turning
process. The reactive controller monitors the changes in force, movement of the arm
with respect to the valve, and changes in the distance to the target. Observing the
uncertainties, the reactive system modulates the valve turning task by changing the
direction and rate of the movement. A real-world experiment with a robot manipu-
lator mounted on a movable base shows the efficiency and validity of this learning
approach. The experimental setup for these experiments is shown in Fig. 1.2. One of
themost interesting applications of the described learningmethods is for accomplish-
ing the autonomous robotic valve manipulation in underwater environment which is
one of the goals of the PANDORA project (Lane et al. 2012; PANDORA 2012).

1.3.2 Related Work

Robotic valve manipulation contains a number of complex and challenging subtasks.
There seem to be few published description of attempts directly related to this task.
Prior works in industrial robotic valve operation, generally use nonadaptive classical
control and basic trajectory planning methods. Abidi et al. (1991) tried to achieve
inspection and manipulation capabilities in the semi-autonomous operation of a



1 Robot Learning for Persistent Autonomy 7

Fig. 1.2 The experimental
set-up for the valve turning
task. The valve is detected
and localized using an
RGB-D sensor through an
AR-marker. The manipulator
is equipped with a gripper
and is mounted on a movable
(wheeled) table. During the
execution of the task, a
human can create random
disturbances by moving the
base of the robot

Wheels

RGBD Camera
Gripper

Valve

Marker

Movable
Table

F/T Sensor

control panel in a nuclear power plant. A 6-DoF industrial robot equipped with
a number of sensors (e.g. vision, range, sound, proximity, force/torque, and touch)
was used. The main drawback is that their approach is developed for static envi-
ronments with predefined dimensions and scales. For instance, the size and position
of the panel, the valve, and other objects in the room are manually engineered into
the system. More recent approaches generally use sensor-based movement meth-
ods which implies that the robot trajectories have not been programmed off-line.
In Anisi et al. (2011), the robot is equipped with a torque sensor and the valve which
is equipped with a proximity sensor is detected using a vision sensor. The authors
focus on a model-based approach to avoid over-tightening/loosening of the valve.
The other phases of the valve manipulation process are accomplished using classical
methods. In another publication, Anisi et al. (2012) develop a valve manipulation
system for an outdoor environment. The vision sensor is replaced with a thermal
camera, and the (round) valve is replaced with a T-bar valve, which is easier for the
robot to manipulate. The main focus of Anisi et al. (2012) is detecting the valve
and avoiding the over-tightening/loosening of the valve in an early stage using a
model-based technique.

Other groups have also investigated valve turning. In Orsag et al. (2014) a frame-
work for valve turning is proposed using a dual-arm arial manipulator system. The



8 P. Kormushev and S.R. Ahmadzadeh

framework is built based on teleoperation and employs motion detection, voice
control and joystick inputs. A user-guided manipulation framework is proposed
in Alunni et al. (2013). Although the planning algorithm generates the robot motions
autonomously, the search process and the object detection phase are accomplished
by a human operator and the result is passed to the robot. A dual-arm impedance
hierarchical controller is devised in Ajoudani et al. (2014) that employs the upper
body kinematics and dynamics of a humanoid robot for reaching and turning a valve.

1.3.3 Hierarchical Learning Architecture

Herewedescribe a hierarchical learning architecturewith three different layerswhich
are illustrated at a high level in Fig. 1.3. Each layer realizes specific subtasks to
improve the persistent autonomy of the system. The lowest layer is responsible for
evaluating demonstrations and generating smooth trajectories using learning meth-
ods. In this layer an integrated approach is used which allows the robot-arm to obtain
new motor skills by kinesthetic teaching. Imitation learning (Kormushev et al. 2011)
is used for training the manipulator to learn a positional profile. An early implemen-
tation of this approach for valve turning can be found in Carrera et al. (2012).

Themiddle layer is responsible for evaluating relativemovements and supervising
the subordinate layer. Observing the feedback from the Optitrack sensor, this upper
layer provides prior decisions depending on the relative behavior of the valve which
affects the dynamics of the system. A reactive fuzzy system, called RFDM (Reactive
Fuzzy Decision Maker), is established for producing proper decisions based on lin-
guistic rules. The RFDM reacts to the relative movement between the AUV and the
valve dynamically and alters the generated trajectory in the lower layer accordingly.
The highest layer, is responsible for tuning the parameters of the RFDM system
using the expert knowledge. Four various local and global optimization algorithms
are implemented to find the best optimum solution.

1.3.4 Learning Methodology

The valve turning task comprises two main phases: reaching and turning. First, the
robot has to learn how to reach the valve. Imitation learning approach which is
designed specially to learn trajectory-based tasks, is a promising choice to learn the
reaching skill (Kormushev et al. 2011; Schaal et al. 2003). In order to reproduce the
reaching skill towards the target, the robot utilizes feedback from the RGB-D sensor
to determine the position and orientation of the valve.

When the robot is able to reproduce the reaching skill a hybrid force/motion control
strategy handles the turning phase. Hybrid force/motion control is a well-established
method (Raibert and Craig 1981; Khatib 1987; Yoshikawa and Zheng 1993). Using
such hybrid strategy, the force controller can maintain the contact between the valve



1 Robot Learning for Persistent Autonomy 9

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.9

The number of windows of data

R
el

at
iv

e 
M

ov
em

en
t

0 10 20 30 40 50 60 70 80 90
0

0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

The number of windows of data

D
el

ay

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

-0.5

0

0.5

F
uz

zy
 D

ec
is

io
n

0 5 10 15 20 25 30 35 40 45 50
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

The number of windows of data

F
uz

zy
 D

ec
is

io
n

Demonstration
Imitation 
Learning

Reproduction

Optitrack,KUKA

Fig. 1.3 A high-level diagram illustrating the three layers of the proposed hierarchical learning
approach

and the gripper while the motion controller turns the valve. The hybrid force/motion
controller utilizes feedback from a Force/Torque (F/T) sensor mounted between the
end-effector and the gripper. Subsequent to the turning phase, the robot employs the
reaching skill in reverse to retract from the valve.

In order to develop an autonomous system, the robot needs to deal with uncertain-
ties. To emulate the uncertainties in our experiments, wemanually apply disturbances
to the system. The disturbances during the execution of the task are monitored and
handled by a Reactive Fuzzy Decision Maker (RFDM). Although such reactive sys-
tem can be implemented using a thresholding method, the fuzzy system is chosen.
The reason is that the fuzzy system provides a continuous decision surface and it
infers from a set of human-defined linguistic rules. The RFDMmodule, monitors the



10 P. Kormushev and S.R. Ahmadzadeh

Fig. 1.4 A high-level flow
diagram illustrating the
different components of the
proposed approach

position of the gripper and the valve together with the magnitude of the forces and
torques applied to the end-effector from the valve. Using this information, RFDM
generates decisions that regulate the movements of the robot during the process. For
example, RFDM halts the process when the magnitude of the force increases due to
an undesired movement. In addition, RFDM also controls the rate of the motion. For
instance, when there is no external disturbance, the robot can reach the valve faster.

As depicted in Fig. 1.2 the experimental setup for all the conducted experiments
consists of a 7-DoF KUKA-LWR manipulator mounted on a movable (wheeled)
table, a (T-bar shaped) mock-up valve mounted on the wall in the robot’s workspace,
a gripper designed for grasping and turning the valve, an ATI Mini45 Force/Torque
(F/T) sensor which is sandwiched between the gripper and the robot’s end-effector,
and an ASUS Xtion RGB-D sensor for detecting and localizing the valve.

Figure1.4 illustrates a flow diagram of the proposed approach. The RGB-D sensor
detects the pose of the valve which is used by the reaching module and RFDM. The
F/T sensor monitors the force/torque applied to the gripper, which is used by the
turning module and RFDM. Observing the inputs provided by the sensors, RFDM
generates proper decisions in order to modulate the behavior of the robot during the
process. The RFDM system is tuned by collecting data from a human expert using
optimization techniques.

1.3.5 Imitation Learning

Imitation learning enablesmanipulators to learn and reproduce trajectory-based skills
from a set of demonstrations (Schaal et al. 2003). The demonstrations are provided
either by teleoperation or through kinesthetic teaching. One of the most widely-
used representations for trajectory-based skills is Dynamical Movement Primitives
(DMP) (Ijspeert et al. 2013). DMP allows to learn a compact representation of the
reaching skill using the recorded demonstrations. In this section, we use the extended
DMP approach proposed in Kormushev et al. (2011) which also encapsulates varia-
tion and correlation information of the demonstrated skill as a mixture of dynamical
systems. In order to reach a target, in this approach a set of virtual attractors is utilized.
The influence of these attractors is smoothly switched along the movement on a time
basis. A proportional-derivative controller is used to move the end-effector towards



1 Robot Learning for Persistent Autonomy 11

the target. In contrast to the original DMP, a full stiffness matrix associated with
each primitives is considered. This allows to capture the variability and correlation
information along the movement. The set of attractors is learned through weighted
least-square regression, by using the residual errors as covariance information to
estimate stiffness gain matrices.

During the demonstration phase, multiple desired trajectories are demonstrated by
a human operator through kinesthetic teaching. Each demonstration m ∈ {1, . . . , M}
consists of a set of Tm positions x, velocities ẋ, and accelerations ẍ, of the end-
effector in Cartesian space where x ∈ R

3. A dataset is formed by concatenating the
P = ∑M

m=1 Tm data points. A desired acceleration is computed based on a mixture
of L proportional-derivative systems as follows:

ˆ̈x =
L∑

i=1

hi(t)[KP
i (μx

i − x) − kvẋ], (1.1)

where ˆ̈x is the desired acceleration, KP
i are the stiffness matrices, μx

i are the centers
of the attractors in Cartesian space, hi(t) are the weighting functions, and kv is the
derivative gain.

By following the weighting functions hi(t), the system converges sequentially
over time to the ordered sequence of attractors. Stiffness matrices KP

i and the centers
μx

i are learned from the observed data using weighted least-square regression. In
the reproduction phase the system uses the learned weights and set of attractors to
reproduce a trajectory to reach the target.

The recorded set of demonstrations is depicted as black curves in Fig. 1.5. Fol-
lowing the described approach, the system learns a set of attractors which can be
seen in the 2D plots in Figs. 1.5a, b as blue ellipsoids. Using the learned set of attrac-
tors the robot is able to reproduce a new trajectory from an arbitrary initial position

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−0.2

−0.1

0

0.1

0.2

0.3

Y (m)

Z
 (

m
)

Target (the valve)

Initial position
for reproduction

final position
for reproduction

−0.6

−0.4

−0.2

0

00.10.20.30.40.50.60.7

−0.2

−0.1

0

0.1

0.2

X (m)
Y (m)

Z
 (

m
)

final position
for reproduction

initial position
for reproduction

(a) (b)

Fig. 1.5 The recorded trajectories that form the set of demonstrations (black), and the reproduced
trajectory from an arbitrary initial position (red) are illustrated. The robot retracts from the middle
of the path by receiving a command from RFDM



12 P. Kormushev and S.R. Ahmadzadeh

Fig. 1.6 The robot reaching the valve during the reproduction phase

towards the target. The red trajectory in Fig. 1.5 illustrates a reproduction. The goal,
i.e. the valve in this experiment, is shown in yellow. A snapshot of the reaching skill
reproduced by the robot is shown in Fig. 1.6.

In this section, we introduce a new capability based on the implicit timing: a
reversible behavior of the system. This new capability enables the robot to perform
the following: (i) reactive behavior by switching the direction of the movement
towards the target or away from it; (ii) after the task is finished the robot uses this
capability to retract the arm. The advantage of the presented capability is that by
learning just the reaching skill the robot is capable of reproducing multiple behaviors
including reaching and retracting, and switching between them. This can be achieved
by changing the timing equation from t = −ln(s)/α to t = tfinal + ln(s)/α.

Figure1.5 illustrates a reproduction from an arbitrary initial position towards the
target. It can be seen that, in themiddle of themovement the robot reverses themotion
and moves backwards. It should be noted that, by executing the reverse motion, the
robot goes back to the center of the first attractor.

1.3.6 Force/Motion Control Strategy

Once the robot learns the reaching skill, the turning phase begins. In this phase, the
goal of the robot is to turn the valve (by 180◦ from its initial configuration) while
maintaining the position of the gripper. To control the forces and torques applied to
the end-effector, a hybrid force/motion control approach is used (Raibert and Craig
1981; Khatib 1987; Yoshikawa and Zheng 1993). Hybrid force/motion controller is
preferred to be used in this application because during the turning phase a zero force
controller can reduce the undesired forces and torques.

The proposed hybrid strategy is designed for 6-axes full space control. Forces and
torques are controlled in the 5-axes while motion is controlled around the z-axis in



1 Robot Learning for Persistent Autonomy 13

order to turn the valve. The assigned coordinate system is depicted in Fig. 1.2 which
is set with respect to the initial pose of the gripper. The z-axis (surge and roll) is
normal to the end-effector’s palm. The y-axis (sway and pitch) is perpendicular to
the z-axis and pointing sideways. And the x-axis (heave and yaw) is perpendicular to
the z − y plane (Das and Das 2004). A desired normal force is set along the z-axis in
order to maintain the gripper in contact with the valve. Zero forces and torques are
specified along the x- and y-axes. The zero desired values of the forces and torques
are designed to lessen the reactionary forces and torques along (around) the axes
during the valve turning process.

The hybrid force/motion controller is suitable for autonomous mobile manipula-
tion (Jamisola et al. 2005). In underwater environment the valve turning task is more
difficult due to the highly unstructured and uncertain environment. Also, the valve
can be rusty and sensitive to high forces/torques. The forces and torques are specified
as follows:

Fcon = Fdes + kp(Fdes − Fact)

Tcon = Tdes + kp(Tdes − Tact)
(1.2)

where F and T denote forces and torques respectively, and subscripts des, act, and
con denote the desired, actual, and control parameters respectively. In the following
sections, some experimental results are explained.

1.3.7 Learning of Reactive Behavior Using RFDM

During robotic valve turning in the real world, a sudden movement of the arm can
endanger both the valve and themanipulator. Also, if the robot exerts huge and uncon-
trolled amount of force/torque during the turning phase, it may break the valve off. In
order to prevent such behaviors and developing a more autonomous and reliable sys-
tem, a reactive decision maker system is designed. This system, which is a Reactive
Fuzzy Decision Maker (RFDM), evaluates the dynamic behavior of the system and
regulates the robot’s movements reactively.We chose fuzzy systems because they are
based on linguistic rules and the parameters that specify the membership functions
have clear physical meanings. Also, there are methods to choose good initial values
for the parameters of a fuzzy system (Wang 1999). The RFDM system monitors the
relative movement between the valve and the end-effector and generates decisions
according to the defined linguistic rules. More details about the design of this RFDM
system can be found in Ahmadzadeh et al. (2013a).

The RFDM described here comprises two additional inputs. One is the distance
between the gripper and the valve. This extra information gives the RFDM the capa-
bility to behave more adaptively. For instance, when the gripper is about to grasp
the valve, the new RFDM generates more informed decisions and increases the sen-
sitivity of the robot’s movements with respect to the disturbances. The other input
is the force/torque values applied to the gripper and reacts to the uncertainties. For
instance, RFDM retracts the arm when it observes a sudden increase in force/torque



14 P. Kormushev and S.R. Ahmadzadeh

during the turning phase. The inputs for RFDM is provided by RGB-D sensor that
works at 30 fps and F/T sensor with 1 ms sampling-time.

Design of the Fuzzy System

The proposed fuzzy system comprises three inputs: (a) the distance between the
gripper and the valve (the norm of the distance vector); and (b) the relative movement
between the valve and the gripper (in x − y plane); (c) the forces and torques applied
to the valve from the gripper.

All the inputs are first normalized in range [0, 1] and then are sent to the RFDM
system. The third input is provided by the F/T sensor which has a sampling interval
equal to 1ms. The output of the sensor consists of three force and three torque ele-
ments. In this case, the torque is multiplied by a factor to be numerically comparable
to the value of the force. The normalizing equation is as follows:

γ = ‖F‖ + β‖T‖
Fmax

(1.3)

where γ ∈ [0, 1], β = 10 is a constant factor used to level-off the range of values
between the forces and the torques, andFmax = 30N is set as themaximum threshold.
The values of these parameters are tuned using expert knowledge and taking into
consideration various constraints such as the actuator saturation thresholds.

Monitoring the relative movement between the valve and the gripper, the system
can detect oscillations with different amplitudes and frequencies. For instance, if
the end-effector is reaching the valve, and the system senses an oscillation with say
Medium amplitude the fuzzy system reacts to that by halting the arm. To simulate
such behavior in the experiments, the operator manually moves the table of the robot
back and forth.Moreover, considering the distance between the gripper and the valve,
the system can change its behavior adaptively. For example, if the gripper isFar from
the valve, even in the presence of a disturbance, the robot still moves towards the
valve. On the other hand, if the gripper is in the vicinity of the valve the robot reacts
to smaller oscillations and waits or even retracts the arm. Furthermore, measuring
the force/torque magnitudes applied to the gripper, generated by colliding either to
the valve or other objects, the system reacts according to the defined rules.

The output of the RFDM system is the reactive decision which is a real number
in the range [−1, 1]. The sign of the output specifies the direction of the movement
(i.e. + for going forward and − for going backward). For instance, −1 means to
retract with 100% speed, 0 means to stop, and 1 means to approach with 100%
speed. Therefore, the RFDM system not only decides the direction of the movement,
but also specifies the rate of the movement.

In order to design the fuzzy system, we consider the inputs to be u = [u1, u2, u3]T

and the output as r. Firstly, Ni(i = 1, 2, 3) fuzzy sets, A1
i , A2

i , . . . , ANi
i , are defined in

range [0, 1], which are normal, consistent, and complete with Gaussian membership
functions μA1

i
, μA2

i
, . . . , μA

Ni
i
. Then, we form Nrule = N1 × N2 × N3 (3 × 4 × 3 =

36) fuzzy IF-THEN rules as follows:



1 Robot Learning for Persistent Autonomy 15

Fig. 1.7 Fuzzy membership
functions defined for each
input

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

Distance (u
1
)

Grasp Near Far

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

Relative Movement (u
2
)D

eg
re

e 
of

 m
em

be
rs

hi
p

VSmall Small Med Big

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

Force (u
3
)

Tolerable Med Intolerable

IF u1 is Ai1
1 and u2 is Ai2

2 and u3 is Ai3
3 THEN y is Bi1i2i3 (1.4)

Moreover, 7 constant membership function in range [−1, 1] are set for the out-
put. The fuzzy membership functions defined for each input are shown in Fig. 1.7.
Finally, the TSK fuzzy system is constructed using product inference engine, single-
ton fuzzifier, and center average defuzzifier (Wang 1999):

r =
∑N1

i1=1

∑N2
i2=1

∑N3
i3=1 yi1i2i3μ

i1
A1

(u1)μ
i2
A2

(u2)μ
i3
A3

(u3)
∑N1

i1=1

∑N2
i2=1

∑N3
i3=1 μ

i1
A1

(u1)μ
i2
A2

(u2)μ
i3
A3

(u3)
(1.5)

Since the fuzzy sets are complete, the fuzzy system iswell-defined and its denomi-
nator is always non-zero. The designed fuzzy system cannot be illustrated in a single
3D plot because it consists of three inputs and one output. We plotted the fuzzy
surface for input variables u2 and u3 over a single value of the variable u1. So each
surface in Fig. 1.8 is related to a fixed value of u1. It can be seen from Fig. 1.8 that
RFDM shows more sensitive and cautious behaviors as the distance to the valve
decreases.

Tuning the Fuzzy System

In order to tune the parameters of the devised fuzzy system, the subconscious knowl-
edge of a human expert is derived. In this case, the human expert knows what to
do but cannot express exactly in words how to do it. In order to extract the subcon-
scious knowledge of the human expert, a tutor simulates the effect of the disturbances
(e.g. underwater currents) by moving the wheeled table, while the robot tries to reach
and turn the valve. Simultaneously, using a slider button, another tutor regulates the
movements of the manipulator while it is following the reproduced trajectory or



16 P. Kormushev and S.R. Ahmadzadeh

Fig. 1.8 Fuzzy inference
system surface including
three inputs (u1, u2, u3). The
input specifying the distance
between the robot and the
valve u1 affects the
sensitivity of the designed
fuzzy system according to
the distance from the valve.
Each surface shows a fixed
value of the u1 input for the
whole range of the u2 and u3
inputs

turning the valve. The tutor applies appropriate continuous commands in the range
[−1, 1], to the system, where−1means go backward along the trajectory with 100%
speed and 1 means go forward along the trajectory with 100% speed. For instance,
when the base of the robot is being oscillated say with a Big amplitude, the tutor
smoothly moves the slider backwards to retract the arm and prevent it from any
collision with the valve or the panel. All data, including the position of gripper and
the valve, and the tutor’s commands are recorded during the learning process. The
recorded data is then used to tune the RFDM in off-line mode.

The error between the recorded data from the tutor, which is a fuzzy surface, and
the output of the un-tuned fuzzy system which is also a fuzzy surface, is used to
make an objective function. The objective function can be minimized using various
optimization algorithms. More details about the implementation can be found in
Ahmadzadeh et al. (2013a).

1.3.8 Iterative Learning Control

Iterative Learning Control (ILC) is an alternative method for improving tracking
in repetitive control scenarios (Moore 2012; Bristow et al. 2006). ILC differs from
other learning-type control strategies, such as adaptive control and neural networks.
Adaptive control strategies modify the controller, which is a system, whereas ILC
modifies the control input, which is a signal.

The goal of ILC is to generate a feedforward control that tracks a specific reference
or rejects a repeating disturbance. ILC has several advantages over a well-designed
feedback and feedforward controller. Foremost is that a feedback controller reacts
to inputs and disturbances and, therefore, always has a lag in transient tracking.
Feedforward control can eliminate this lag, but only for known ormeasurable signals,



1 Robot Learning for Persistent Autonomy 17

such as the reference. Therefore, ILC cannot directly be applied for disturbance
rejection because disturbances are typically not repetitive.

1.4 Learning to Recover from Failures

Fault tolerance is the capability of a robot to complete a mission despite the failure of
one or more subsystems. It is also referred to as fault control, fault accommodation or
control reconfiguration. The capability to recover from failures is extremely impor-
tant for autonomous robots that operate in harsh environments or difficult-to-reach
places for humans, such as underwater or in outer space. In this section we describe
learning methods for improving the fault-tolerance of autonomous robots in order
to increase their reliability and persistent autonomy. To be more specific, we will
focus on a particular application for Autonomous Underwater Vehicles (AUVs). We
describe a learning-based approach that is able to discover new control policies to
overcome thruster failures of AUVs as they happen.

Persistent Autonomy or operating over long missions without any human assis-
tance, is one of the most challenging goals for underwater robotics. AUVs are
supposed to deal with extreme uncertainties in unstructured environments, where
a failure can endanger both the vehicle and the mission. A fault-tolerant strategy
enables the system to continue its intended operation, possibly at a reduced level,
rather than failing completely.

Usually, a fault-tolerance strategy consists of three steps: fault detection, fault
isolation, and fault tolerance. Fault detection is the process of monitoring a system
to recognize the presence of a failure. Fault isolation or diagnosis is the capability
to determine which specific subsystem is subject to failure. Both topics have been
extensively investigated in the literature and have several effective solutions (Caccia
et al. 2001; Alessandri et al. 1998; Hamilton et al. 2001; Antonelli 2003).

Although the failure can happen in any subsystem of an AUV, here we focus on
the case of a thruster failure. Thruster blocking, rotor failure, and flooded thrusters
are some of the factors that can lead to a thruster failure in real missions (Caccia
et al. 2001). After the failure is detected and isolated a fault-tolerant strategy must
be considered to rescue the vehicle safely.

Fig. 1.9 The diagram shows the fault detection and fault recovery modules. The fault recovery
module includes a number of elements such as policy representation, reward function and dynamics
model of the system



18 P. Kormushev and S.R. Ahmadzadeh

Most of the existing fault-tolerant schemes consider some actuator redundancies,
so that the vehicle remains actuated in the Degree of Freedom (DOF) of interest,
even if a fault occurs in one of the thrusters. For this category of problems a general
solution has been found: reallocating the desired forces on the vehicle over the
working thrusters (Alessandri et al. 1998; Caccia et al. 2001; Podder et al. 2000;
Podder and Sarkar 2001). While the problem has been extensively considered in the
case of actuator-redundant vehicles, the literature is still lacking a unifying approach
if a broken thruster makes the AUV under-actuated (Antonelli 2006). A few works
are targeted at AUV controlled with surfaces (Perrault and Nahon 1998; Cheng
and Leonard 1999; Seto 2011). Those methods are specific to the kinematics and
dynamics models of the considered AUV.

Themethodology described here, on the other hand, makes use of the AUVmodel
for simulation, but not in the derivation of the controller, which is of a pre-defined
form.Weuse a linear function approximator to represent the policy,whose parameters
are learned based on the AUV model and the particular task at hand.

1.4.1 Methodology

As can be seen in Fig. 1.9 when a thruster is deemed faulty, the fault detectionmodule
sends a signal to the fault recovery module. This module’s task is to discover a fault-
tolerance control policy using the remaining assets of the system. The discovered
control policy have to be able to safely bring the AUV to a station where it can be
rescued.

The proposed fault recovery module is framed in the context of model-based
direct policy search for reinforcement learning. This framework comprises a dynamic
model of the vehicle, a parameterized representation for the control policy, a reward
function, and an optimization algorithm. The dynamics model of the system is recon-
figured according to the current situation of the system. In the employedmodel-based
policy search approach the trials are performed on the on-board dynamic model and
not directly by the vehicle. For AUVs this is not a practical limitation, as their dynam-
ics have been modeled accurately.

The direct policy search utilizes a function approximation technique and an opti-
mization heuristic to learn an optimal policy that can reach the goal specified by the
reward function. The optimization heuristic can be treated as a black-box method
because in policy search over a finite horizon, the particular path followed by the
agent in the state-space can be ignored. In this section, all the components of the fault
recovery module depicted in Fig. 1.9 are explained. Further details about the imple-
mentation and real-world experiments with thismethod can be found inAhmadzadeh
et al. (2014a).



1 Robot Learning for Persistent Autonomy 19

1.4.2 Fault Detection Module

The process of monitoring a system in order to recognize the presence of a failure is
called fault detection. We only consider the case of thruster failure which can take
place due to thruster blocking, rotor failure, flooded thrusters, etc. In a real underwater
vehicle sometimes the thruster may still work but not as a fully functional module.
For instance, some sea plants may twist around the propeller of the thruster and
reduce its efficiency by a percentage. In this section, we consider a generic case in
which a thruster can be fully functional, partially broken or totally nonfunctional.

Failure detection in AUVs and ROVs has been extensively studied before
(Caccia et al. 2001; Hamilton et al. 2001; Antonelli 2003). Therefore, we assume
that a fault detection module is available and placed in a higher layer of the system
architecture (see Fig. 1.9). This module continuously monitors all the thrusters and
sends information about their coefficient of functionality (healthiness) to update the
other modules. The output of this module is a vector of functionality coefficients in
range [0, 1], where 0 indicates a totally nonfunctional thruster, 1 represents a fully
functional thruster, and for instance, 0.7 indicates a thruster with 70% efficiency.

1.4.3 Problem Formulation

We consider the problem of using the functional thrusters to bring the vehicle safely
to a station where it can be rescued, when the thruster failure reduces the mobility
of the vehicle, and hence it cannot maneuver as previously prescribed. The AUV
we use for our experiments is Girona500 (Ribas et al. 2012) which is used in the
PANDORA project (Lane et al. 2012), see Fig. 1.10. Girona500 is a reconfigurable
AUVequippedwith typical navigation sensors (e.g.DopplerVelocityLog, etc.), basic
survey equipments (e.g. side scan sonar, video camera, etc.), and various thruster
layouts. In the layout we selected, the AUV is equipped with 5 thrusters: 2 heave, 2
surge, and 1 sway thrusters.

Fig. 1.10 Amodel of the Girona500 AUV equipped with 5 thrusters arranged in a particular layout
as shown. In the conducted failure recovery experiments, one of the surge thrusters is broken



20 P. Kormushev and S.R. Ahmadzadeh

1.4.4 Learning Methodology

We frame our approach as model-based direct policy search reinforcement learning
for discovering fault-tolerant control policies to overcome thruster failures in AUVs.
The described approach learns on an on-board simulated model of the AUV.

In previous research (Ahmadzadeh et al. 2014b, 2013b; Leonetti et al. 2013) fault-
tolerant control policies have been discovered considering the assumption that the
failure makes the thruster totally broken, meaning that a faulty thruster is equivalent
to a thruster which is turned off. One of the pros of this approach is taking advantage
of the remaining functionality of a partially broken thruster. Therefore, this method
can deal with partially broken thrusters and use them to reach the desired goal.

The framework presented here comprises a dynamic model of the vehicle (1.6),
a parameterized representation for the control policy, a cost function, and an opti-
mization algorithm, as described in the following sections.

AUV Model

A dynamic model of an AUV is formed using a set of equations and a set of parame-
ters. The obtained model is then used to find the optimal solutions that are executed
on the robot later. The dynamics equations of a 6-DoF rigid body subject to external
forces and torques while moving in a fluid environment can be generally formulated
as follows:

η̇ = J (η) ν

(MRB + MA) ν̇ + (CRB (ν) + CA (ν) + D (ν)) ν + g (η) = Bτ,
(1.6)

where η �
[
x y z φ θ ψ

]T
is the pose (position and orientation) vector with respect

to the inertial frame and ν �
[
u v w p q r

]T
is the body velocity vector defined in the

body-fixed frame. J (η) is the velocity transformation matrix, MRB is the rigid body
inertia matrix, MA is the hydrodynamic added mass matrix, CRB (ν) is the rigid body
Coriolis and centripetal matrix, CA (ν) is the added mass Coriolis and centripetal
matrix, D (ν) is the hydrodynamic damping matrix, g(η) is the hydrostatic restoring
force vector, B is the actuator configuration matrix, and the vector τ is the control
input vector or command vector.

In our experiments we use Girona500 (Ribas et al. 2012) which is a reconfigurable
AUV equipped with typical navigation sensors (e.g. Doppler Velocity Log Sensor),
survey equipments (e.g. stereo camera) and various thruster layouts. As depicted
in Fig. 1.10, the selected thruster layout in this work consists of five thrusters: 2 in
heave direction, 2 in surge direction, and 1 in sway direction. In order to build a
model of the system for simulating the behaviors of the AUV, the hydrodynamic
parameters of Girona500, are substitute in the dynamics equations of the AUV (1.6).
The hydrodynamic parameters are extracted using an online identification method
and are reported in Karras et al. (2013).



1 Robot Learning for Persistent Autonomy 21

Policy Representation

In this work we consider the control input vector u as a function Π(χ |θ) of obser-
vation vector χ depending on a parameter vector θ . The policy is represented with a
linear function approximator, that is a function of the form u = Π(χ |θ) = θTΦ(χ),
where Φ(χ) is a matrix of basis functions or feature vectors (φi(χ)). Here we
use Fourier basis functions because they are easy to compute accurately even for
high orders, and their arguments are formed by multiplication and summation rather
than exponentiation. In addition, the Fourier basis seems like a natural choice for
value function approximation (Konidaris et al. 2011). For each Fourier basis function
φi = cos(πci · χ), the coefficient ci determines the order of the approximation and
the correlation between the observation variables. There are different choices for the
observation vector χ . More details about the function approximation using Fourier
basis can be found in Konidaris et al. (2011).

Cost Function

The performance of the vehicle is measured through a cost function:

J(θ) =
T∑

t=0

ct(ηt)

∣
∣
∣
∣
∣
Π(χ |θ)

(1.7)

where ct is the immediate cost, and depends on the current state ηt , which in turn is
determined by the policy and its parameters. Therefore, the aim of the agent is to tune
the policy’s parameters in order to minimize the cumulative cost J over a horizon T .
We employ a model-based policy search approach where trials are performed on the
model and not directly by the vehicle. For AUVs this is not a practical limitation, as
their dynamics has been modeled accurately. The cost function is the other degree
of freedom of our approach. Many different definitions of the immediate costs are
possible. In policy search over a finite horizon, the particular path followed by the
agent in the state space can be ignored, and the optimization treated with black-box
methods over θ .

Optimization Algorithms

We implement three optimization algorithms to compare the quality and the com-
putational feasibility of the solution for online discovery of the fault-tolerant policy.
We use a derivative-free optimization algorithm called Modified Price’s (MP) algo-
rithm (Leonetti et al. 2012), the well-known Simulated Annealing (Kirkpatrick et al.
1983), and the powerful stochastic evolutionary algorithm, Differential Evolution
(Storn and Price 1997). The first algorithm was used for online identification of
Girona500 as well (Karras et al. 2013). Policy gradient approaches can be used as an
alternative solution, because they estimate the derivative of the policy with respect
to the parameters of the model. The main issue is that the estimation procedure of
these approaches is expensive, so derivative-free methods are chosen to be applied
in this particular case.



22 P. Kormushev and S.R. Ahmadzadeh

Online Procedure

In our scenario, when a thruster is deemed faulty, a function J is created to represent
the cost of a path to the target location. The on-board model of the AUV is adapted
to the failure conditions (i.e. the isolated thrusters are specified and ignored in the
model). The optimization algorithm is then used to compute the optimal policy, in
the given policy representation, that takes the AUV as close as possible to the target
location using only the functional thrusters. The optimization algorithm computes
the optimal policy based on the on-boardmodel of theAUV. The discovered policyΠ

substitutes the AUV’s controller that would work under normal operating conditions.
Finally, the learned policy is executed on the real robot in a closed-loop using the
state feedback of the AUV. It is also possible to use the target location as a waypoint,
by adding a secondary optimization objective (appropriately weighed) to J. As will
be seen subsequently, the secondary objective enforces the robot to reach the desired
point with a given velocity.

1.4.5 Experiments

We performed our experiments on the dynamic model of Girona500 presented in
(1.6), whose parameters have been identified in Karras et al. (2013). All of the
experiments, are designed so that the thruster failure occurs in the horizontal plane,
while the heave movement of the AUV is always controlled by its original controller.
We assume the right surge thruster to be broken, so we turn it off during the failure
recovery experiments. In such a case, theGirona500AUVcan only navigate using the
left surge and the sway thrusters (the lateral one). Thus the vehicle becomes under-
actuated and any attempt to change the allocation matrix B would be ineffective. We
use the following definition of the immediate cost:

ct(〈pt, vt〉) =
{ ‖ pt − pd ‖ if t < T

w ‖ vt − vd ‖ if t = T
(1.8)

where the state χt = 〈pt, vt〉 is composed by position and velocity at time t, pd is
the desired location, vd is the desired velocity and w weighs the velocity objective
with respect to the positional one. The secondary objective is considered only at
the final state (t = T ). For all our experiments we use T = 60 s, since all the target
destinations are reachable in 60 s. We also designed the cost function so that when
the AUV reaches to an area close enough to the desired position, ‖ pt − pd ‖< 0.2m,
the optimization algorithm is terminated.

Experimental Result

A classical control architecture of an AUV includes a position/velocity controller
that utilizes the desired inputs and the sensory feedback of the vehicle to control
the position or velocity of the system. This architecture is illustrated in Fig. 1.11



1 Robot Learning for Persistent Autonomy 23

Fig. 1.11 Control
architecture of the AUV
including the controller level
and the fault recovery level.
The green line shows the
state feedback used in the
state-dependent policy
representation

and is called the controller level. In order to evaluate the capability of the original
controller of Girona500 for thruster failure recovery, a real-world experiment is
designed. Firstly, we command the AUV to move 3m in the surge direction (x-axis)
and record the thruster commands for all 5 thrusters of the robot. Secondly, we turn
off the right surge thruster and repeat the same test. The recorded data is depicted in
Fig. 1.12. It can be seen that in the second test (with broken right surge thruster) the
original controller still tries to use the same thruster configuration as in the normal
situation. Consequently, the controller fails to use the sway thruster as a means of
recovery from the surge thruster failure. This experiment shows that the original
controller of the system cannot recover the robot from thruster failure, and a failure
recovery level (the dashed blue box in Fig. 1.11) needs to be added to the control
level architecture of the AUV (the dashed red box in Fig. 1.11). To this end, when
the fault detection and isolation module identifies a failure, it sends a message to
the higher-level supervisor and, eventually, modifies the fault-tolerant controller and
triggers the switch.

Time-Dependent Policy

In the first experiment, the policy is represented by a linear function approximator that
depends only on time t, Π(t|θ) = θTΦ(t). In this representation θ is the parameter
vector and to represent Φ(t) we employ a 3rd order Fourier basis (Konidaris et al.
2011). In this case the control policy can be more flexible than the constant policy
representation in the previous experiment.Also the desired velocity of 〈0, 0〉 becomes
more relevant. The number of optimization parameters, which was only 2 in the
previous experiment, equals to 8 in this case. As it can be seen in Fig. 1.13a, b, the
obtained velocity profiles are varied; however, the acquired trajectories are similar.
Once again, the optimization process was repeated 50 times for each optimization
algorithm.

State-Dependent Policy

In this policy representation experiment, we close the loop by including feed-
back from the state variables (i.e. position, orientation, together with linear and
angular velocities). In this case, the policy depends on the state variables χ ,
π(χ |θ) = θTΦ(χ), where θ is the parameter vector. Employing a 3rd order Fourier
basis to representΦ(χ), the number of optimization parameters becomes 16 for each
thruster. So, for the experiment in 2D plane including 2 undamaged and one broken



24 P. Kormushev and S.R. Ahmadzadeh

−1

0

1
Normal AUV

T
hr

.1
S

ur
ge

−1

0

1
Damaged AUV

−1

0

1
T

hr
.2

S
ur

ge

−1

0

1

−1

0

1

T
hr

.3
H

ea
ve

−1

−0.5

0

−1

0

1

T
hr

.4
H

ea
ve

−1

−0.5

0

0 20 40
−1

0

1

time [sec]

T
hr

.5
S

w
ay

0 20 40
−1

0

1

time [sec]

Fig. 1.12 The recorded thruster commands for a normal AUV (left column) and a damaged AUV
(right column). In the damaged AUV case the right surge thruster is broken. The right column
illustrates what happens when using the original controller scheme without any failure recovery
functionality. In particular, the controller fails to use the sway thruster in order to circumvent the
failed surge thruster

thrusters, the total number of optimization parameters equals to 32. As it can be
seen in Fig. 1.13c, d the acquired velocity profiles are varying but converged towards
〈0, 0〉 more smoothly; however, the acquired trajectories are similar. Once again, the
optimization process was repeated 50 times for each optimization algorithm.

Real-World Experiment

In this real-world experiment, we test our approach on Girona500. As it is depicted
in Fig. 1.14, firstly we command the robot to move 3m along the surge direction
while the original controller of the system is navigating the AUV; the blue trajectory
in Fig. 1.14 shows the result. Secondly, we turn off the right surge thruster and repeat
the same experiment. The behavior of the controller is plotted as the red trajectory in
Fig. 1.14. The result shows that the original controller of the systemcannot recover the
AUV from the failure, and the position error is increasing gradually. Furthermore, we
run the simulation using the state-dependent policy representation to find an optimal
policy for this thruster failure situation. The simulation result is plotted as the green
trajectory in Fig. 1.14. Finally, the same optimal solution is applied to the real robot
and the recorded trajectory is plotted as the black trajectory in Fig. 1.14. The behavior
of the robot is very similar to the simulation. Although the presented approach is
using the model of the AUV, the main factors that make the real and simulated
data slightly different can be enumerated as: (1) a manipulator arm was attached
to the robot during the real-world experiment (for some other purpose), which was



1 Robot Learning for Persistent Autonomy 25

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

X [m]

Y
 [m

]

DE

Start point

Targetdist < 0.2

MP

SA

0 5 10 15 20 25
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time [sec]

V
el

oc
ity

 [m
/s

ec
]

SA
SA
MP
MP
DE
DE

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

X [m]

Y
 [m

]

DESA

Start point

Target
dist < 0.2

MP

0 5 10 15
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

time [sec]

V
el

oc
ity

 [m
/s

ec
]

SA
SA
MP
Mp
DE
DE

(a) (b)

(c) (d)

Fig. 1.13 Acquired results for the first experiment with time-dependent policy representation
(a)–(b), and the experiment with state-dependent policy representation (c)–(d). a Trajectories in
2D plane. b Velocity profiles along X and Y axes. c Trajectories in 2D plane. d Velocity profiles
along X and Y axes

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

X [m]

Y
 [m

]

Original Controller + Normal Condition
Original Controller + 1 Broken Thruster
Learned Policy + 1 Broken Thruster
Initial Position
Target Position
Simulated Policy + 1 Broken Thruster
Orientation of the AUV

Fig. 1.14 The trajectories recorded in different scenarios during the real-world experiments



26 P. Kormushev and S.R. Ahmadzadeh

not considered neither in the model of the AUV nor in the identification process
of the hydrodynamic parameters, (2) unmodeled disturbances from the dynamic
environment (e.g. currents, eddies and other sources of noise).

1.5 Conclusion

The presented experiments with robot manipulators and autonomous underwater
vehicles confirm the usefulness of robot learning approaches in real world scenarios.
These learning methods address many of the facets of persistent autonomy, such
as: coping with uncertainty, reacting to changing conditions, and fault tolerance.
There are, of course, many other important issues of persistent autonomy that also
need to be tackled. For example, a very important one is energy efficiency. There is
promising research showing that learning methods can also be applied successfully
for improving the energy efficiency of autonomous robots (Kormushev and Caldwell
2013a, b). Another important issue is the ability to re-plan online and dynamically
the mission plan according to the changes in the environment. Planning and learning
are two areas of robotics research that can be mutually beneficial towards achieving
the higher goal of persistent autonomy.

Acknowledgments We would like to thank Professor David Lane from the Ocean Systems Labo-
ratory, Heriot-Watt University, UK, for introducing us to the topic of persistent autonomy.
We are grateful to Arnau Carrera, Narcís Palomeras, and Marc Carreras from the Computer Vision
and Robotics Group (VICOROB), University of Girona, Spain, for making it possible to conduct
real-world experiments with the Girona 500 AUV.
This work was supported by the European project PANDORA: Persistent Autonomy through learN-
ing, aDaptation, Observation and ReplAnning, contract FP7-ICT-288273 (PANDORA 2012).

References

AbidiMA, Eason RO, Gonzalez RC (1991) Autonomous robotic inspection andmanipulation using
multisensor feedback. Computer 24(4):17–31

Ahmadzadeh SR, Kormushev P, Caldwell DG (2013a) Autonomous robotic valve turning: a hier-
archical learning approach. In: 2013 IEEE international conference on robotics and automation
(ICRA). IEEE, pp 4614–4619

Ahmadzadeh SR, Leonetti M, Kormushev P (2013b) Online direct policy search for thruster failure
recovery in autonomous underwater vehicles. In: 6th international workshop on evolutionary and
reinforcement learning for autonomous robot system (ERLARS 2013), Taormina, Italy

Ahmadzadeh SR, Jamisola RS, Kormushev P, Caldwell DG (2014a) Learning reactive robot behav-
ior for autonomous valve turning. In: Proceedings of the IEEE international conference on
humanoid robots (Humanoids 2014), Madrid, Spain

Ahmadzadeh SR, Leonetti M, Carrera A, Carreras M, Kormushev P, Caldwell DG (2014b) Online
discovery of AUV control policies to overcome thruster failure. In: 2014 IEEE international
conference on robotics and automation (ICRA). IEEE, pp 6522–6528



1 Robot Learning for Persistent Autonomy 27

Ajoudani A, Lee J, Rocchi A, Ferrati M, Mingo E, Settimi A, Caldwell DG, Bicchi A, Tsagarakis
N (2014) A manipulation framework for compliant humanoid COMAN: application to a valve
turning task. In: 2014 IEEE-RAS international conference on humanoid robots (Humanoids
2014). IEEE, pp 664–670

AlessandriA,CacciaM,VeruggioG (1998)Amodel-based approach to fault diagnosis in unmanned
underwater vehicles. In: OCEANS’98 conference proceedings, vol 2. IEEE, pp 825–829

Alunni N, Phillips-Grafftin C, Suay HB, Lofaro D, Berenson D, Chernova S, Lindeman RW, Oh P
(2013) Toward a user-guided manipulation framework for high-dof robots with limited commu-
nication. In: 2013 IEEE international conference on technologies for practical robot applications
(TePRA). IEEE, pp 1–6

Anisi DA, Persson E, Heyer C (2011) Real-world demonstration of sensor-based robotic automation
in oil & gas facilities. In: 2011 IEEE/RSJ international conference on intelligent robots and
systems (IROS). IEEE, pp 235–240

Anisi DA, Skourup C, Petrochemicals A (2012) A step-wise approach to oil and gas robotics. In:
IFAC workshop on automatic control in offshore oil and gas production, Trondheim, Norway,
vol 31

Antonelli G (2003) A survey of fault detection/tolerance strategies for AUVs and ROVs. In: Caccav-
ale F, Villani L (eds) Fault diagnosis and fault tolerance formechatronic systems: recent advances.
Springer, Berlin, pp 109–127

Antonelli G (2006) Underwater robots: motion and force control of vehicle-manipulator systems.
Springer tracts in advanced robotics. Springer, New York

BristowD, TharayilM, Alleyne AG et al (2006) A survey of iterative learning control. IEEEControl
Syst 26(3):96–114

Caccia M, Bono R, Bruzzone G, Bruzzone G, Spirandelli E, Veruggio G (2001) Experiences on
actuator fault detection, diagnosis and accomodation for ROVs. In: International symposiyum of
unmanned untethered sub-mersible technology

Carrera A, Ahmadzadeh S, Ajoudani A, Kormushev P, Carreras M, Caldwell D (2012) Towards
autonomous robotic valve turning. Cybern Inf Technol 12(3):17–26

Cheng ASF, Leonard NE (1999) Fin failure compensation for an unmanned underwater vehi-
cle. In: Proceedings of the 11th international symposium on unmanned untethered submersible
technology

Das SN, Das SK (2004) Determination of coupled sway, roll, and yaw motions of a floating body
in regular waves. Int J Math Math Sci 41:2181–2197

Hamilton K, Lane D, Taylor N, Brown K (2001) Fault diagnosis on autonomous robotic vehicles
with recovery: an integrated heterogeneous-knowledge approach. In: Proceedings of the IEEE
International Conference on Robotics and Automation, ICRA, 2001, vol 4. IEEE, pp 3232–3237

Ijspeert AJ, Nakanishi J, Hoffmann H, Pastor P, Schaal S (2013) Dynamical movement primitives:
learning attractor models for motor behaviors. Neural Comput 25(2):328–373

Jamisola RS, Oetomo DN, Ang MH, Khatib O, Lim TM, Lim SY (2005) Compliant motion using
a mobile manipulator: an operational space formulation approach to aircraft canopy polishing.
Adv Robot 19(5):613–634

Karras GC, Bechlioulis CP, Leonetti M, Palomeras N, Kormushev P, Kyriakopoulos KJ, Caldwell
DG (2013) On-line identification of autonomous underwater vehicles through global derivative-
free optimization. In: Proceedings of the IEEE/RSJ international conference on intelligent robots
and systems (IROS)

Khatib O (1987) A unified approach for motion and force control of robot manipulators: the oper-
ational space formulation. IEEE J Robot Autom 3(1):43–53

Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science
220(4598):671–680

Konidaris G, Osentoski S, Thomas PS (2011) Value function approximation in reinforcement learn-
ing using the fourier basis. In: AAAI



28 P. Kormushev and S.R. Ahmadzadeh

Kormushev P, Caldwell DG (2013a) Improving the energy efficiency of autonomous underwa-
ter vehicles by learning to model disturbances. In: Proceedings of the IEEE/RSJ international
conference on intelligent robots and systems (IROS), Tokyo, Japan

Kormushev P, Caldwell DG (2013b) Towards improved AUV control through learning of periodic
signals. In: Proceedings of theMTS/IEEE international conference onOCEANS 2013, SanDiego

Kormushev P, Calinon S, Caldwell DG (2011) Imitation learning of positional and force skills
demonstrated via kinesthetic teaching and haptic input. Adv Robot 25(5):581–603

Lane DM,Maurelli F, Kormushev P, Carreras M, FoxM, Kyriakopoulos K (2012) Persistent auton-
omy: the challenges of the PANDORA project. In: Proceedings of the IFAC MCMC

Leonetti M, Kormushev P, Sagratella S (2012) Combining local and global direct derivative-free
optimization for reinforcement learning. Cybern Inf Technol 12(3):53–65

LeonettiM,Ahmadzadeh SR,Kormushev P (2013)On-line learning to recover from thruster failures
on autonomous underwater vehicles. In: OCEANS 2013. IEEE

Moore KL (2012) Iterative learning control for deterministic systems. Springer Science & Business
Media, London

Orsag M, Korpela C, Bogdan S, Oh P (2014) Valve turning using a dual-arm aerial manipulator. In:
2014 international conference on unmanned aircraft systems (ICUAS). IEEE, pp 836–841

PANDORA (2012) Persistent autonomy through learning, adaptation, observation and re-planning.
http://persistentautonomy.com/, PANDORA European Project

Perrault D, Nahon M (1998) Fault-tolerant control of an autonomous underwater vehicle. In:
OCEANS’98 conference proceedings, vol 2. IEEE, pp 820–824

Podder T, Antonelli G, Sarkar N (2000) Fault tolerant control of an autonomous underwater vehicle
under thruster redundancy: simulations and experiments. In: Proceedings of the IEEE interna-
tional conference on robotics and automation, ICRA’00, 2000, vol 2. IEEE, pp 1251–1256

Podder TK, Sarkar N (2001) Fault-tolerant control of an autonomous underwater vehicle under
thruster redundancy. Robot Auton Syst 34(1):39–52

Raibert MH, Craig JJ (1981) Hybrid position/force control of manipulators. J Dyn Syst, Measur,
Control 103(2):126–133

Ribas D, Palomeras N, Ridao P, Carreras M, Mallios A (2012) Girona 500 AUV: from survey to
intervention. IEEE/ASME Trans Mechatron 17(1):46–53

Schaal S, Ijspeert A, Billard A (2003) Computational approaches to motor learning by imitation.
Philoso Trans R Soc Lond Ser B: Biol Sci 358(1431):537–547

Seto ML (2011) An agent to optimally re-distribute control in an underactuated AUV. Int J Intell
Def Support Syst 4(1):3–19

StornR, PriceK (1997)Differential evolution-a simple and efficient heuristic for global optimization
over continuous spaces. J Glob Optim 11(4):341–359

Wang L (1999) A course on fuzzy systems. Prentice-Hall press, Upper Saddle River
Yoshikawa T, Zheng XZ (1993) Coordinated dynamic hybrid position/force control for multiple
robot manipulators handling one constrained object. Int J Robot Res 12(3):219–230

http://persistentautonomy.com/

	1 Robot Learning for Persistent Autonomy
	1.1 Persistent Autonomy
	1.2 Robot Learning Architecture
	1.3 Learning of Reactive Behavior
	1.3.1 Autonomous Robotic Valve Turning
	1.3.2 Related Work
	1.3.3 Hierarchical Learning Architecture
	1.3.4 Learning Methodology
	1.3.5 Imitation Learning
	1.3.6 Force/Motion Control Strategy
	1.3.7 Learning of Reactive Behavior Using RFDM
	1.3.8 Iterative Learning Control

	1.4 Learning to Recover from Failures
	1.4.1 Methodology
	1.4.2 Fault Detection Module
	1.4.3 Problem Formulation
	1.4.4 Learning Methodology
	1.4.5 Experiments

	1.5 Conclusion
	References


