
Chapter 4
Visuospatial Skill Learning

Seyed Reza Ahmadzadeh and Petar Kormushev

Abstract This chapter introduces Visuospatial Skill Learning (VSL), which is a
novel interactive robot learning approach. VSL is based on visual perception that
allows a robot to acquire new skills by observing a single demonstration while
interacting with a tutor. The focus of VSL is placed on achieving a desired goal
configuration of objects relative to another. VSL captures the object’s context for
each demonstrated action. This context is the basis of the visuospatial representa-
tion and encodes implicitly the relative positioning of the object with respect to
multiple other objects simultaneously. VSL is capable of learning and generaliz-
ing multi-operation skills from a single demonstration, while requiring minimum
a priori knowledge about the environment. Different capabilities of VSL such as
learning and generalization of object reconfiguration, classification, and turn-taking
interaction are illustrated through both simulation and real-world experiments.

4.1 Introduction

During the past decade several robot skill learning approaches based on human
demonstrations have been proposed (Ijspeert et al. 2013, 2002; Kormushev et al.
2011; Argall et al. 2009). Many of them address motor skill learning in which new
motor skills are transferred to the robot using policy derivation techniques such as
mapping function (Vijayakumar and Schaal 2000), system model (Abbeel and Ng
2004), etc. Motor skill learning approaches can be categorized in two main groups:
trajectory-based and goal-based. To emulate the demonstrated skill, the former group
put the focus on recording and regenerating trajectories (Ijspeert et al. 2002) or
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intermittently forces (Kronander and Billard 2012). In the work by (Bentivegna et al.
2004) for instance, a humanoid robot learns to play air hockey by learning in the
work by primitives, or when combined with reinforcement learning in the work by
(Kormushev et al. 2010) a robot learns to flip a pancake by observing demonstrations.

In many cases, however, it is not the trajectory that is of central importance, but
the goal of the task (e.g. solving a jigsaw puzzle). Learning every single trajectory
in such tasks actually increases the complexity of the learning process unnecessarily
(Niekum et al. 2012). To address this drawback, several goal-based approaches have
been proposed (Verma and Rao 2005; Dantam et al. 2012; Chao et al. 2011). There
is a large body of literature on grammars from the linguistic and computer science
communities, with a number of applications related to robotics (Niekum et al. 2012;
Dantam et al. 2012). Furthermore, a number of symbolic learning approaches exist
that focus on goal configuration rather than action execution (Chao et al. 2011).
However, in order to ground the symbols, they comprise many steps inherently,
namely segmentation, clustering, object recognition, structure recognition, symbol
generation, syntactic task modeling, motion grammar, rule generation, etc. Another
drawback of such approaches is that they require a significant amount of a priori
knowledge to be manually engineered into the system (Niekum et al. 2012; Dantam
et al. 2012). In addition, most above-mentioned approaches assume the availability
of the information on the internal state of a tutor such as joint angles, while humans
usually cannot directly access to imitate the observed behavior.

An alternative to motor skill approaches are visual learning approaches which are
based on observing the human demonstration and using human-like visual skills to
replicate the task (Kuniyoshi et al. 1994; Lopes and Santos-Victor 2005).

We propose a novel visual skill learning approach for interactive robot learn-
ing tasks. Unlike the motor skill learning approaches, our approach utilizes visual
perception as the main source of information for learning new skills from demonstra-
tion. The proposed approach which is called Visuospatial Skill Learning(VSL), uses
visuospatial skills to replicate the demonstrated task. Visuospatial skill is the capa-
bility to visually perceive the spatial relationship between objects. VSL uses a simple
algorithm and requiresminimuma priori knowledge to learn a sequence of operations
from a single demonstration. In contrast tomany previous approaches, VSL leverages
simplicity, efficiency, and user-friendly human-robot interaction. Rather than relying
on complicated models of human actions, labeled human data, or object recognition,
our approach allows the robot to learn a variety of complex tasks effortlessly, simply
by observing and reproducing the visual relationship among objects.We demonstrate
the feasibility of the proposed approach in several simulated and real-world experi-
ments in which the robot learns to organize objects of different shape and color on a
tabletopworkspace to accomplish a goal configuration. In the conducted experiments
the robot acquires and reproduces main capabilities such as, object reconfiguration,
absolute and relative positioning, classification, and turn-taking.

The rest of the chapter is organized as follows. Related work is reviewed in
Sect. 4.2. The definitions, terminology, and methodology of the VSL approach are
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explained in Sect. 4.3. Implementation of the VSL approach is described in Sect. 4.4.
Experimental result is reported in Sect. 4.5. And finally conclusions of the research
are drawn in Sect. 4.6.

4.2 Related Work

Visual skill learning or learning bywatching is one of themost powerful mechanisms
of learning in humans. It has been shown that even infants can imitate both facial
and manual gestures (Meltzoff and Moore 1977). In cognitive science, learning by
watching has been investigated as a source of higher order intelligence and fast
acquisition of knowledge (Rizzolatti et al. 1996; Schaal 1999; Park et al. 2008).
In the rest of this section we give examples of visual skill learning approaches.
We mention works that can be categorized as goal-based and the main source of
information is visual perception, and especially those which focus on the learning of
object manipulation tasks.

One of the most influential works on the problem of plan extraction from obser-
vation was proposed by Ikeuchi and Suehiro (1994). To extract assembly plans from
observations a continuous sequence of images is obtained. Using level change in the
brightness differences the images are segmented and the objects are detected and
recognized using background subtraction and feature match finding respectively. A
set of simple features (e.g. edge, face) and a pre-defined geometric model are used in
the match finding process. By comparing two sets of object relations, the transition
between them are extracted. The system determines the assembly relations by ana-
lyzing contact directions. All existing assembly relation transitions are extracted and
unnecessary relation transitions are pruned. The system also determines manipulator
operations from the assembly relations. The reproduction phase in the conducted
experiments are neglected and the authors just focus on the extraction of task plans
from observation. One of the drawbacks of their approach is that it requires a geomet-
ric model and a predefined coordinate system for each object. The defined coordinate
systems are used to determine the grasping configuration and orientation which are
predetermined in the system.

The early work of Kuniyoshi et al. (1994) focuses on acquiring reusable high-
level task knowledge by watching a demonstration. In their learning by watching
approach, multiple vision sensors are used to monitor the execution of the task. The
focus of the paper is on the demonstration phase and it lacks a reproduction phase.
By extracting some basic visual features from the observation, the object recognition
system finds a match between the observation and a 3D model of the environment.
The system assigns a symbol to each action and the executed actions are recognized
from a pre-defined action database. From the set of recognized executed actions
a high-level task plan is extracted. To detect the moving object, human-hand is
tracked. Since tracking the hand is not sufficient for classifying assembly operations,
the meaningful changes are also tracked using temporal subtraction. In addition, the
direction to move the search window is detected from the movement of the hand.
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The approach can only deal with rectangular objects and translational movements
and the system cannot detect rotations. The other disadvantage of the approach is
that the model-based shape recognition is computationally expensive and after each
operation and before the reproduction phase the model of the environment has to
be updated accordingly. This modification increases the complexity of the approach.
Finally, the method cannot detect objects in contact as separate objects.

Asada et al. (2000) proposed a method for learning by observation (teaching by
showing) based on the tutor’s view recovery and adaptive visual servoing. Based on
the assumption that coordinate transformation is a time-consuming and error-prone
method. Instead, they assume that both the robot and the tutor have the same body
structure. They use two sets of stereo cameras, one for observing the robot’s motions
and the other for observing the tutor’s motions. The optic-geometrical constraint,
called epipolar constraint, is used to reconstruct the view of the agent, on which
adaptive visual servoing is applied to imitate the observed motion. In our method,
we use coordinate transformation between the sensor and the robot.

Ehrenmann et al. (2001) proposed a learning from observation system using mul-
tiple sensors in a kitchen environment with typical household tasks. They focus
on pick-and-place operations including techniques for grasping. A data glove, a
magnetic field based tracking system and an active trinocular camera head were
used in their experiments. Object recognition is done using fast view-based vision
approaches. Also, they extract finger joint movements and hand position in 3D space
from the data glove. The method is based on pre-trained neural networks to detect
hand configurations and to search in a predefined database. However, there was no
real-world reproduction with a robot. A similar research focuses on extracting and
classifying subtasks for grasping tasks using visual data, generating trajectories and
extracting subtasks (Yeasin and Chaudhuri 2000). They use color markers to capture
data from the tutor’s hand. In our method, we use neither neural networks nor symbol
abstraction techniques.

A visual learning by imitation approach was proposed by Lopes and Santos-
Victor (2005). The authors utilize neural networks to map visual perception to motor
skills (visuo-motor) together with viewpoint transformation. For gesture imitation a
Bayesian formulation is adopted. A single camera was used in the experiments.

Ekvall and Kragic (2008) proposed a symbolic learning approach in which a log-
ical model for a STRIPS1 planner from multiple human demonstrations are learned.
In their work, a task planning approach is used in combination with robot learn-
ing from demonstration. The robot generates states and identifies constraints of a
task incrementally according to the order of the action execution. In this approach
a demonstration is assumed to be an image of the target configuration and they do
not use observations of each action. Differently from our approach, the objects are
first modeled geometrically and a set of SIFT (Scale Invariant Feature Transform
algorithm proposed by Lowe (2004)) features for each object is extracted in off-line

1STRIPS stands for Stanford Research Institute Problem Solver which is a symbolic planner devel-
oped in 1971.
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mode and used during the learning phase. The method can only deal with polyhedral
objects.

A symbolic goal-based learning approach was proposed by Chao et al. (2011)
that can ground discrete concept from continuous perceptual data using unsuper-
vised learning. To learn the task goal, Bayesian inference is used. In the conducted
experiments, five non-expert tutors performed multiple demonstrations for five pick-
and-place tasks. Each task consists of a single pick-and-place operation. Background
subtraction is used for segmentation and the workspace was detected using a marker.
The visual set of features consists of width and length of the best fitting ellipsoid, the
area of the simplified polygon, and the hue histogram. During each operation, the
object that changes most significantly is detected. The starting and ending time of
each demonstration is provided using graphical or speech commands. Our approach
solely relies on the captured observations to learn the sequence of operations and
there is no need to perform any of those steps.

Niekum et al. (2012) proposed a method to learn from continuous demonstrations
by segmenting the trajectories and recognizing the skills. Segmentation and recog-
nition are achieved using a Beta-Process Autoregressive Hidden Markov Model
(BP-AR-HMM), while Dynamic Movement Primitives are used to reproduce the
skill. Their framework can be categorized as a trajectory-based technique that has
been used to learn a goal-based task. Joint data, gripper data, and stereo vision data are
recorded during the demonstration phase. Themethod has been applied to rectangular
objects which are manipulated without rotation. Object detection has been done just
in the simulation and in the real-world experiment ARmarkers are employed instead.
For each experiment, a coordinate frame has been assigned manually to each known
object. These coordinate frames are used to relate the objects to the demonstrated
skills. One of the drawbacks is that sometimes during the segmentation process an
extra skill is extracted and the system fails to identify a coordinate frame for extra
skills. Another disadvantage of this framework is that increasing the number of skills
in the demonstrations makes the segmentation process more complicated.

Visual analysis of demonstrations and automatic policy extraction for an assembly
task was proposed by Dantam et al. (2012). To convert a demonstration of the desired
task into a string of connected events, this approach uses a set of different techniques
such as image segmentation, clustering, object recognition, object tracking, struc-
ture recognition, symbol generation, transformation of symbolic abstraction, and
trajectory generation. In our approach, we do not use symbol generation techniques.

Guadarrama et al. (2013) proposed a natural language interface for grounding
nouns and spatial relations. The data used for the training phase has been acquired
via a virtual world. The PR2 robot equipped with a laser scanner for creating the map
and an RGB-D sensor for segmentation and recognition of the objects was employed.
Their method learns to classify a database of modeled objects. In contrast to VSL
which usesminimum a priori knowledge, there is a huge database of collected images
for each object which is used to train a classifier. Also, they apply a language module
to learn related spatial prepositions.

Feniello et al. (2014) have built a framework upon our proposed approach, VSL
(Ahmadzadeh et al. 2013b), by introducing a stack-based domain specific language
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for describing object repositioning tasks. By performing demonstrations on a tablet
interface, the time required for teaching is greatly reduced and the reproduction
phase can be validated before execution of the task in the real-world. Various types
of real-world experiments are conducted including sorting, kitting, and packaging
tasks.

4.3 Introduction to Visuospatial Skill Learning

The VSL approach is a goal-based robot learning from demonstration approach. It
means that a human tutor should demonstrate a sequence of operations on a set of
objects. Each operation consists of a set of actions, for instance a pick action and a
place action. In this chapter, we only consider pick-and-place object manipulation
tasks in which achieving the goal of the task and retaining the sequence of operations
are particularly important. We consider the virtual experimental setup illustrated in
Fig. 4.1a which consists of a robot manipulator equipped with a gripper, a tabletop
workspace, a set of objects, and a vision sensor. The sensor can bemounted above the
workspace to observe the tutor performing the task. Using VSL, the robot learns new
skills from the demonstrations by extracting spatial relationships among objects.
Afterwards starting from a random initial configuration of the objects, the robot
can perform a new sequence of operations which ultimately results in reaching the
same goal as the one demonstrated by the tutor. A high-level flow diagram shown
in Fig. 4.1b illustrates that VSL consists of two main phases: demonstration and
reproduction. In the demonstration phase for each action a set of observations is
recorded which is utilized for the match finding process during the reproduction
phase. In this section, first, the basic terms for describing VSL are defined. Then the
problem statement is described and finally the VSL approach is explained in details.

(a) (b)

Fig. 4.1 Virtual setup and flow diagram for the VSL approach. a Virtual experimental setup for a
VSL task consisting of a robot manipulator, a vision sensor, a set of objects, and a workspace. b A
high-level flow diagram of VSL illustatrating the demonstration and reproduction phases
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4.3.1 Terminology

The basic terms that are used to describe VSL consist of:

World: the workspace of the robot which is observable by the vision sensor. The
world includes objects which are being used during the learning task, and can be
reconfigured by the human tutor and the robot.

Frame: a bounding box which defines a cuboid in 3D space or a rectangle in 2D
space. The size of the frame can be fixed or variable. The maximum size of the
frame is equal to the size of the world.

Observation: the captured context of the world from a predefined viewpoint using
a specific frame. An observation can be a 2D image or a cloud of 3D points.

Pre-action observation: an observation which is captured just before the action is
executed. The robot searches for preconditions in the pre-action observations
before selecting and executing an action.

Post-action observation: an observation which is captured just after the action is
executed. The robot perceives the effects of the executed actions in the post-action
observations.

The set of actions contains different primitive skills for instance, pick, place, push,
pull, etc. We assume that actions are known to the robot and the robot can execute
each action when required. For an extension to this assumption see Ahmadzadeh
et al. (2015).

4.3.2 Problem Statement

Formally, we define a process of visuospatial skill learning as a tuple

V = {W,O,F ,A, C,Π, φ} ,

where W ∈ R
m×n is a matrix which represents the context of the world includ-

ing the workspace and all objects. WD and WR indicate the world during the
demonstration and reproduction phases respectively; O is a set of observation dic-
tionaries O = {OPre,OPost

}
; OPre and OPost are observation dictionaries com-

prising a sequence of pre-action and post-action observations respectively. OPre =
〈OPre(1),OPre(2), . . . ,OPre(η)〉, andOPost=〈OPost (1),OPost (2), . . . ,OPost (η)〉.
η is the number of operations performed by the tutor during the demonstration phase.
Thereby, for example,OPre(i) represents the pre-action observation captured during
the ith operation.

F ∈ R
m×n is an observation frame which is used for capturing the observations.

A is a set of primitive actions defined in the learning task (e.g. pick). C is a set of
constraint dictionaries C = {CPre, CPost

}
; CPre and CPost are constraint dictionaries

comprising a sequence of pre-action, and post-action constraints respectively. Π is
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a policy or an ordered action sequence extracted from demonstrations. φ is a vector
containing extracted features from observations (e.g. SIFT features). Pseudo-code
of VSL is given in Algorithm 4.7.

Algorithm 4.7 Visuospatial Skill Learning (VSL)
Input: {W,F,A}
Output: {O,P,Π, C,B, φ}
1: L=detectLandmarks(W)

2: i = 1 , j = 1
3: // Part I : Demonstration
4: for each operation do
5: OPre

i = getPreActionObs(WD,FD)

6: OPost
i = getPostActionObs(WD,FD)

7: [Bi ,P Pre
i ,P Post

i , φi ] = getObject(OPre
i ,OPost

i )

8: [CPre
i , CPost

i ] = getConstraint(Bi ,P Pre
i ,P Post

i ,L)

9: Πi = getAction(A, CPre
i , CPost

i )

10: i = i + 1
11: end for
12: // Part II: Reproduction
13: for j = 1 to i do
14: P∗Pre

j = findBestMatch (WR,OPre
j , φ j , CPre

j ,L)

15: P∗Post
j = findBestMatch (WR,OPost

j , φ j , CPost
j ,L)

16: executeAction(P∗Pre
j ,P∗Post

j ,Π j )

17: end for

4.3.3 Methodology

At the beginning of the demonstration, the objects are randomly placed in the world
(WD). The world, the size of the frame, and the set of primitive actionsA are known
to the robot. In the demonstration phase, the size of the frame (FD) is equal to the size
of the world (WD). We consider that the robot is capable of executing the primitive
actions fromA. For instance, the robot is capable of moving towards a desired given
pose and execute a pick action. Implementation details can be found in Sect. 4.4.

In some tasks the tutor utilizes a landmark in order to specify different concepts.
For instance, a vertical borderline can be used to divide the workspace into two
areas illustrating right and left zones. Another example is a horizontal borderline
that can be used to specify far and near concepts. A landmark can be either static or
dynamic. A static landmark is fixed with respect to the world during both phases.
A dynamic landmark can be replaced by the tutor before reproduction phase. Both
types are shown in our experiments. In case that, any landmark is being used in the
demonstration (e.g. label, borderline), the robot should be able to detect them in the
world (line 1 in Algorithm 4.7). However, the robot cannot manipulate a landmark.
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During the demonstration phase, VSL captures one pre-action observation (O pre)
and one post-action observation (O post ) for each operation executed by the tutor
using the specified frame (FD) (lines 5, 6). The pre-action and post-action observa-
tions are used to detect the object on which the action is executed. The observations
are also used to detect the place where the object is repositioned at. For each detected
object, a symbolic representation (B) is created. The symbolic object can be used in
case that the reproduction phase of the algorithm is replaced with a high-level sym-
bolic planner (Ahmadzadeh et al. 2015). In addition, VSL extracts a feature vector
(φ) for each detected object. In order to extract φ any feature extracting method can
be used (e.g. SIFT). The extracted features are used for detecting the objects during
the reproduction phase.

VSL also extracts the pose of the object before and after action execution
(P Pre,P Post ). The pose vectors together with the detected landmarks (L) are used
to identify preconditions and effects of the executed action through spatial reasoning
(line 8). For instance, if P Pre is above a horizontal borderline and P Post is below the
line, the precondition of the action is that the object is above the line and the effect
of the execution of the action is that the object is below the line. In other words, by
observing the predicates of an executed action, the action can be identified from the
set of actionsA (line 9). The sequence of identified actions are then stored in a policy
vector Π .

Furthermore, the second part of the algorithm is able to execute the learned
sequence of actions independently (Ahmadzadeh et al. 2013a, b). In such case, VSL
observes the new world (WR) in which the objects are replaced randomly. Compar-
ing the recorded pre- and post-action observations, VSL detects the best matches
for each object and executes the actions from the learned policy. Although, the find-
BestMatch function can use any metric to find the best matching observation, to be
consistent, in all of our experiments we use the same metric (see Sect. 4.4.2). After
finding the best match, the algorithm extracts the pose of the object before and after
action execution, P∗Pre

j , P∗Post
j (lines 14, 15). Finally, an action is selected from the

policy Π and together with pre and post pose is sent to the executeAction function.
This function selects the A j primitive action. As we mentioned before, the robot
knows how to perform a primitive action, for instance it uses a trajectory generation
module and a grasping strategy to perform a pick action.More details about the action
execution can be found in Sect. 4.4. It is worth noting that to reproduce the task with
more general capabilities, a generic symbolic planner can be utilized instead of the
reproduction part of the algorithm (Ahmadzadeh et al. 2015).

4.4 Implementation of VSL

In this section the steps required to implement the VSL approach for real-world
experiments are described.
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Fig. 4.2 Coordinate
transformation from the
image plane to the
workspace plane (T
represents the homography
matrix)

4.4.1 Coordinate Transformation

In order to transform points between the coordinate frame of the sensor (image
plane) and the coordinate frame of the robot (workspace plane) and vice versa a
coordinate transformation is required (see Fig. 4.2). The coordinate transformation
between the sensor’s frame of reference and the robot’s frame of reference is done
using coordinate transformation matrix T. This matrix is calculated using Singu-
lar Value Decomposition (SVD) by collecting two sets of points, one set from the
workspace and the other set from the captured image (Hartley and Zisserman 2000).
Whenever the sensor’s frame of reference is changedwith respect to the robot’s frame
of reference, T has to be recalculated. Using the updated coordinate transformation
matrix, VSL can reproduce the learned skill even if the experimental setup is altered.
It means that VSL is a view-invariant approach.

4.4.2 Image Processing

Image processing methods have been employed in both demonstration and repro-
duction phases of VSL. In the demonstration phase, for each operation the algorithm
captures a set of raw images consisting pre-pick and pre-place images. Firstly, the
captured raw images are rectified using the homography matrix T. Secondly image-
subtraction and thresholding techniques are applied on the couple of images to gen-
erate pre-pick and pre-place observations. The produced observations are centered
around the frame. In the reproduction phase, for each operation the algorithm rectifies
the captured world observation. Then, the corresponding recorded observations are
loaded from the demonstration phase and a metric is applied to find the best match
(the findBestMatch function in the Algorithm 4.7). Although anymetric can be used
in this function (e.g. window search method), we use Scale Invariant Feature Trans-
form (SIFT) algorithm (Lowe 2004). SIFT is one of the most popular feature-based
methodswhich is able to detect and describe local features that are invariant to scaling
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and rotation. Afterwards, we apply Random Sample Consensus method (RANSAC)
in order to estimate the transformation matrix Tsift from the set of matches. Since
the calculated transformation matrix Tsift has 8 degrees of freedom, with 9 elements
in the matrix, to have a unique normalized representation we pre-multiply Tsift with
a normalization constant, α as defined in (4.1). This constant is selected to make the
decomposed projective matrix have a vanishing line vector of unit magnitude and
that avoids unnatural interpolation results.

α = sign(Tsift(3, 3))√
(Tsift(3, 1)

2 + Tsift(3, 2)
2 + Tsift(3, 3)

2)
. (4.1)

The normalized matrix αTsift can be decomposed into simple transformation ele-
ments,

αTsift = TRθR−φSvRφP, (4.2)

where R±φ are rotation matrices to align the axis for horizontal and vertical scaling
of Sv; Rθ is another rotation matrix to orientate the shape into its final orientation; T
is a translation matrix; and lastly P is a pure projective matrix that can be written as:

P =
⎡

⎣
1 0 0
0 1 0

αT(3, 1) αT(3, 2) αT(3, 3)

⎤

⎦ .

An affine matrix TA is the remainder of αT by extracting P; TA = αTP−1. T
is extracted by taking the 3rd column of TA and A, which is a 2 × 2 matrix, is the
remainder of TA. A can be further decomposed using SVD such that,

A = UDVT , (4.3)

where D is a diagonal matrix, and U and V are orthogonal matrices. Finally we can
calculate the matrices in (4.2) as follows

Sv =
[

D 0
0 1

]
, Rθ =

[
UVT 0
0 1

]
, Rφ =

[
VT 0
0 1

]

Since Rθ is calculated for both pick and place operations (R
pick
θ , Rplace

θ ), the pick and
place rotation angles of the objects are extracted,

θpick = arctan
(

Rpick
θ (2,2)

Rpick
θ (2,1)

)
(4.4)

θplace = arctan
(

Rplace
θ (2,2)

Rplace
θ (2,1)

)
. (4.5)
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Fig. 4.3 The result of the
image subtracting and
thresholding for a place
action (right), match finding
result between the 4th
observation and the world in
the 4th operation during
reproduction of the Domino
task using SIFT (left). See
Sect. 4.5.2 for more details

Note that projective transformation is position-dependent compared to the
position-independent affine transformation. More details about homography esti-
mation and decomposition can be found in Wong et al. (2007).

VSL relies on vision, which might be obstructed by other objects, by the tutor’s
body, or during the reproduction by the robot’s arm. Therefore, for physical imple-
mentation of the VSL approach special care needs to be taken to avoid such obstruc-
tions. Finally, we should mention that the image processing part is not the focus of
our research, and we use the SIFT-RANSAC algorithms because of their popularity
and the capability of fast and robust match finding. Figure4.3 shows the result of
match finding using SIFT applied to an observation and a new world.

4.4.3 Trajectory Generation

In order to perform a pick-and-place operation, the robot must execute a set of
actions consisting of reaching, grasping, relocating, and releasing. Either reaching
and relocating actions correspond to a trajectory. These trajectories can either be
manually programmed into the system or a tutor can teach them to the robot for
instance through learning by demonstration technique (Ahmadzadeh et al. 2015).
However, a simple trajectory generation strategy has been used in this chapter. The
pick and place points together with the pick and place rotation angles extracted from
the image processing section, are used to generate a trajectory for the corresponding
operation. For each pick-and-place operation the desired Cartesian trajectory of the
end-effector is a cyclic movement between three key points: rest point, pick point,
and place point. Figure4.4a illustrates a complete trajectory generated for a pick-
and-place operation. Also, four different profiles of rotation angles are depicted in
Fig. 4.4b. The robot starts from the rest point while the rotation angle is equal to
zero and moves smoothly along the red curve towards the pick point. During this
movement the robot’s hand rotates to satisfy the pick rotation angle according to the
rotation angle profile. Then the robot picks up an object, relocates it along the green
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Fig. 4.4 The generated trajectory including position and orientation profiles for a spatial pick-and-
place. a A full cycle of spatial trajectory generated for a pick-and-place operation. b The generated
angle of rotation, θ , for the robot’s hand

curve to the place-point, while the hand is rotating to meet the place rotation angle.
Then, the robot places the object in the place-point, and finally moves back along
the blue curve to the rest-point. The initial and final rotation angles are considered
to be zero. In order to form each trajectory, initial conditions (i.e. initial positions
and velocities) and a specific duration must be defined. Thereby, a geometric path is
defined which can be expressed in the parametric form of the following equations:

px = a3s3 + a2s2 + a1s + a0, (4.6)

py = b3s3 + b2s2 + b1s + b0, (4.7)

pz = h[1 − |(tanh−1(h0(s − 0.5)))
κ |], (4.8)

where, s is a function of time t , (s = s(t)), px = px (s), py = py(s), and pz = pz(s)
are the 3D elements of the geometric spatial path; The ai and bi coefficients in (4.6)
and (4.7) are calculated using the initial and final conditions. κ in (4.8) denotes the
curvature, h0 and h are initial height and height of the curve in the middle point of
the path respectively. h and h0 can be either provided by the tutor or detected through
depth information provided by an RGB-D sensor. In addition, the time is smoothly
distributed with a 3rd order polynomial between the tstart and tfinal which both are
instructed by the user.

Moreover, to generate a rotation angle trajectory for the robot’s hand, a trapezoidal
profile is used together with the θpick and θplace angles calculated in (4.4), (4.5). As
shown in Fig. 4.4a, the trajectory generationmodule can also deal with objects placed
in different heights (different z-axis levels). We discuss the grasp and release actions
in the next section.
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4.4.4 Grasp Synthesis

There are many elaborate ways to do grasp synthesis for known or unknown objects
(Bohg et al. 2014; Su et al. 2012). Since the problem of grasping is not the main
focus of our research, we implement a simple but efficient grasping method using the
torque sensor of the Barrett Hand. The grasping position is calculated using the center
of the corresponding pre-action observation. The grasping module firstly opens all
the fingers and after the hand is located above the desired object, closes them. The
fingers stop closing when the measured torque is more than a pre-defined threshold
value. In addition, by estimating a bounding box for the target observation, the values
are used to decide which axis is more convenient for grasping.

4.5 Experimental Results

In this section a set of simulated and real-world experiments are carried out. The sim-
ulated experiments are designed to gain an understanding of how VSL operates and
to show the main idea of VSL without dealing with practical limitations and imple-
mentation difficulties. The real-world experiments, on the other hand, are carried
out to show the main capabilities and limitations of VSL in practice while dealing
with uncertainties. Before describing the conducted experiments, it is worth noting
that, in all the illustrations, the straight and curved arrows are used just to show the
sequence of operations, not the actual trajectories for performing the movements.

4.5.1 Simulated Experiments

In this section three simulated experiments are performed to illustrate the main idea
behind the VSL approach. For each simulated experiment a set of 2D objects is made
which the tutor can manipulate and assemble them on an empty workspace using
keyboard or mouse. Each operation consists of a pick and a place action, which are
executed by holding and releasing a mouse button.

A House Scene

In the first VSL task, theworld includes seven 2D objects with different colors. How-
ever, the objects are detected based on their shapes not their color features. Theworld
also includes a fixed baseline (i.e. a landmark L) which cannot be manipulated. The
goal is to assemble the set of objects on the baseline according to the demonstra-
tion. This task emphasizes VSL’s capability of relative positioning of an object with
respect to other surrounding objects in the world. This inherent capability of VSL
is achieved through the use of visual observations which capture both the object of
interest and its surrounding objects (i.e. its context). In addition, the baseline is pro-
vided to show the capability of absolute positioning of theVSL approach. It shows the
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Fig. 4.5 House scene
simulated experiment to
illustrate the relative and
absolute positioning
capabilities of VSL.
a Demonstration.
b Reproduction

(a)

(b)

fact that we can teach the robot to attain absolute positioning of objects without defin-
ing any explicit a priori knowledge. Figure4.5a shows the sequence of operations
in the demonstration phase. Recording pre-pick and pre-place observations, OPre,
OPost , the robot learns the spatial relationships among objects. Figure4.5b shows
the sequence of operations produced by VSL on a novel world which is achieved by
reshuffling the objects randomly in the world.

Roof Placement

In this task, the world includes two sets, each containing three visually identical
objects (i.e. three blue ‘house bodies’ and three brown ‘roofs’). As can be seen in
Fig. 4.6a, the tutor selects the ‘roof’ objects arbitrarily and places them on top of
the ‘bodies’. However, in the 3rd operation, the tutor intentionally puts the ‘roof’ at
the bottom of the ‘house body’. The goal of this experiment is to show the VSL’s
capability of disambiguation of multiple alternative matches. If the algorithm uses a
fixed search frame (FR) that is smaller than the size of the ‘bodies’ (i.e. blue objects
in the world), then, as shown in the first and second sub-figures of Fig. 4.6b, the two
captured observations can become equivalent (i.e. O1 = O2) and the 3rd operation
might be performed incorrectly (see the incorrect reproduction in Fig. 4.6c). The
reason is that, due to the size of the frame, the system perceives a section of the world
not bigger than the size of a ‘house body’. The system is not aware that an object is
already assembled on the top and it will select the first matching pre-place position to
place the last object there. To resolve this problemwe use adaptive size frames during
the match finding process in which the size of the frame starts from the smallest
feasible size and grows up to the size of the world. The function findBestMatch
in Algorithm 4.7, is responsible for creating and changing the size of the frame
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Fig. 4.6 Roof placement
simulated experiment to
illustrate VSL’s capability of
disambiguation of multiple
alternative matches.
a Demonstration. b Three
steps of adaptive frame-size.
c Reproduction

(a)

(b)

(c)

adaptively in each step. This technique helps the robot to resolve the ambiguity issue
by adding more context inside the observation, which in effect narrows down the
possible matches and leaves only a single matching observation. Figure4.6c shows
the sequence of reproduction including correct and incorrect operations.

Tower of Hanoi

The last simulated experiment is the famous mathematical puzzle, Tower of Hanoi,
which consists of a number of disks of different sizes and three bases or rods which
actually are landmarks. The objective of the puzzle is to move the entire stack
to another rod. This experiment demonstrates almost all capabilities of the VSL
approach. Two of these capabilities are not accompanied by the previous experi-
ments. Firstly, our approach enables the user to intervene to modify the reproduction.
Such capability can be used to move the disks to another base (e.g. to move the stack
of disks to the third base, instead of the second). This can be achieved only if the
user performs the very first operation in the reproduction phase and moves the small-
est disk on the third base instead of the second. Secondly, VSL enables the user to
perform multiple operations on the same object during the learning task. Figure4.7
illustrates the reproduction sequence of the Tower of Hanoi puzzle, including three
disks.
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Fig. 4.7 Tower of Hanoi
simulated experiment to
illustrate the capabilities of
VSL to perform interactive
reproduction,
disambiguation, and absolute
positioning

4.5.2 Real-World Experiments

After performing some simulated experiments that illustrate the main idea of VSL,
in order to show the capabilities and limitations of the proposed learning approach,
in this section five real-world experiments are conducted. Table4.1 summarizes the
capabilities of VSL which are emphasized in each task.

Experimental Setup

As can be seen in Fig. 4.8, the experimental setup for all the conducted real-
world experiments consists of a torque-controlled 7 DOF Barrett WAM robotic arm

Table 4.1 Capabilities of VSL illustrated in each real-world experiment

Capability Task
Animal Puzzle Alphabet

Ordering
Tower of
Hanoi

Animals
versus
Machines

Domino

Relative
positioning

� � � - �

Absolute
positioning

− � � − −

Classification − − − � −
Turn-taking − − � � �
User
intervention

− − � � �
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Fig. 4.8 The experimental
setup for a Visuospatial Skill
Learning (VSL) task

equipped with a 3-finger Barrett Hand, a tabletop working area, a set of objects, and a
CCD camera which is mounted above the workspace (not necessarily perpendicular
to the workspace).

In all the conducted experiments, the robot learns simple objectmanipulation tasks
including pick-and-place actions. In order to perform a pick-and-place operation,
the extracted pick and place poses are used to make a cyclic trajectory as explained
in Sect. 4.4.3. The grasp strategy is implemented based on the method explained
in Sect. 4.4.4. In the demonstration phase, the size of the frame for the pre-pick
observation is set equal to the size of the biggest object in the world, and the size of
the frame for the pre-place observation 2–3 times bigger than the size of the biggest
objects in the world. In the reproduction phase, on the other hand, the size of the
frame is set equal to the size of the world.

The vision sensor is mounted above the table facing the workspace. The reso-
lution of the captured images are 1280 × 960 pixels. Although the trajectories are
created in the end-effector space, we control the robot in the joint-space based on
the inverse dynamics to avoid singularities. Also, during the reproduction phase, our
controller keeps the orientation of the robot’s hand (end-effector) perpendicular to
the workspace plane, in order to facilitate the pick-and-place operation.

Alphabet Ordering

In the first real-world VSL task, theworld includes four cubic objects labeled with A,
B, C , and D letters. Similar to the first simulated experiment the world also includes
a fixed right angle baseline which is a landmark (L). The goal is to reconfigure and
sort the set of objects with respect to the baseline according to the demonstration. As
reported in Table4.1, this task emphasizes VSL’s capability of relative positioning of
an object with respect to other surrounding objects in the world (a visuospatial skill).
This inherent capability of VSL is achieved through the use of visual observations
which capture both the object of interest and its surrounding objects (i.e. its context).
In addition, the baseline is provided to show the capability of absolute positioning
of the VSL approach. It shows the fact that we can teach the robot to attain absolute
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(a)

(b)

Fig. 4.9 Alphabet ordering. The initial configuration of the objects in the world is different in (a)
and (b). Theblack arrows show the operations.aThe sequence of the operations in the demonstration
phase by the tutor. b The sequence of the operations in the reproduction phase by the robot

positioning of objects without defining any explicit a priori knowledge. Figure4.9a
shows the sequence of operations in the demonstration phase. Recording pre-pick
and pre-place observations, the robot learns the sequence of operations. Figure4.9b
shows the sequence of operations produced by VSL starting from a novel world (i.e.
new initial configuration) which is achieved by randomizing the objects in the world.

Animal Puzzle

In the previous task, due to the absolute positioning capability of VSL, the final
configuration of the objects in the reproduction and the demonstration phases are
always the same. In this experiment, however, by removing the fixed baseline from
the world, the final result can be a totally new configuration of objects. The goal
of this experiment is to show the VSL’s capability of relative positioning which is
reported in Table4.1. In this VSL task, the world includes two sets of objects which
complete a ‘frog’ and a ‘giraffe’ puzzle. There are also two labels (i.e. landmarks)
in the world, a ‘pond’ and a ‘tree’. The goal is to assemble the set of objects for
each animal with respect to the labels according to the demonstration. Figure4.10a
shows the sequence of operations in the demonstration phase. To show the capability
of generalization, the ‘tree’ and the ‘pond’ labels are randomly replaced by the
tutor before the reproduction phase. Figure4.10b shows the sequence of operations
reproduced by VSL after learning the spatial relationships among objects.

Tower of Hanoi

In this experiment, the Tower of Hanoi puzzle is performed again, this time in real-
world. As mentioned before, this experiment demonstrates almost all capabilities of
VSL comprising relative and absolute positioning, user intervention to modify the
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(a)

(b)

Fig. 4.10 Animal puzzle. The initial and the final configurations of the objects in the world are
different in (a) and (b). The black arrows show the operations. a The sequence of the operations in
the demonstration phase by the tutor. b The sequence of the operations in the reproduction phase
by the robot

Fig. 4.11 The sequence of
the reproduction for the
Tower of Hanoi experiment
to illustrate the main
capabilities of VSL

reproduction, and multiple operations performed on the same object. The sequence
of reproduction is shown in Fig. 4.11.

Animals versus Machines: A Classification Task

In this interactive task we demonstrate the VSL capability of classification of
objects. We provided the robot with four objects, two ‘animals’ and two ‘machines’.
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Also, two labeled bins are used in this experiment for classifying the objects. Similar
to previous tasks, the objects, labels and bins are not known to the robot initially. In
this task, firstly, all the objects are randomly placed in the world. The tutor randomly
picks objects one by one and places them in the corresponding bins. In the repro-
duction phase, the tutor places one of the objects each time, in a different sequence
with respect to the demonstration. The robot detects the object and classifies it. This
is an interactive task between the human and the robot. The human tutor can modify
the sequence of operations in the reproduction phase by presenting the objects to the
robot in a different order with respect to the demonstration.

Interestingly the same VSL algorithm is utilized to learn a classification task.
However in this task the robot doesn’t follow the operations sequentially but searches
in the pre-pick observation dictionary to find the best matching pre-pick observa-
tion. Then, it uses the selected pre-pick observation for reproduction as before. The
sequence of operations in the demonstration phase are illustrated in Fig. 4.12. Each
row represents one pick-and-place operation. During each operation, the tutor picks
an object and moves it to the proper bin. The set of pre-pick and pre-place observa-
tion can be seen in left and right columns respectively. The match finding process is
done using SIFT. Figure4.13 shows two operations during the reproduction phase.

Fig. 4.12 The sequence of operations in the demonstration phase. Each column represents one
pick-and-place operation. In each operation, the tutor picks one object and classifies it either as an
‘animal’ or a ‘machine’. The selected object in each operation is shown in the middle row
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Fig. 4.13 Two operations during the reproduction phase are shown. The red crosses on the objects
and on the bins, show the detected positions for pick and place actions respectively

Domino: A Turn-Taking Task

The goal of this experiment is to show that VSL can also deal with the tasks including
the cognitive behaviour of turn-taking. In this VSL task, the world includes a set of
objects all of which are rectangular tiles. Each two pieces of the puzzle fit together to
form an object (see Fig. 4.14). In the demonstration phase, the tutor first demonstrates
all the operations. To learn the spatial relationships, the system uses the modified
algorithm from the classification task. In the reproduction phase, the tutor starts the
game by placing the first object (or another) in a random place. The robot then takes
the turn, finds and places the next matching domino piece. The tutor can also modify
the sequence of operations in the reproduction phase by presenting the objects to
the robot in a different order with respect to the demonstration. The sequence of
reproduction is shown in Fig. 4.14.

Fig. 4.14 The sequence of reproduction performed by the robot and the tutor are shown for the
turn-taking task of domino
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Results

Table4.1 summarizes the main capabilities of VSL which are emphasized in each
real-world experiment.

In order to test the repeatability of VSL and to identify the possible factors of
failure, the captured observations from the real world experiments were used while
excluding the robot from the loop.All other parts of the loopwere kept intact and each
experiment was repeated three times. The result shows that less than 5% of pick-and-
place operations failed. The main failure factor is the match finding error which can
be resolved by adjusting the parameters of SIFT-RANSAC or using alternativematch
finding algorithms. The noise in the images and the occlusion of the objects can be
listed as two other potential factors of failure. Despite the fact that VSL is scale-
invariant, color-invariant, and view-invariant, it has some limitations. For instance, if
the tutor accidentally moves one object while operating another, the algorithm may
fail to find a pick/place position. One possible solution is to combine classification
techniques together with the image subtraction and thresholding techniques to detect
multi-object movements.

4.6 Conclusions

In this chapter, a visuospatial skill learning approach has been introduced that has
powerful capabilities as shown in the simulated and real-world experiments. The
introduced approach possesses capabilities such as relative and absolute positioning,
user intervention to modify the reproduction, classification, and turn-taking. These
characteristics make VSL a suitable choice for interactive robot learning tasks which
rely on visual perception. Moreover, VSL is convenient for the vision-based robotic
platforms which are designed to perform a variety of repetitive and interactive pro-
duction tasks (e.g. Baxter). The main reason is that applying VSL to such platforms,
requires neither complex programming skills nor costly integration.
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