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Abstract— A learning approach is proposed for the challeng-
ing task of autonomous robotic valve turning in the presence of
active disturbances and uncertainties. The valve turning task
comprises two phases: reaching and turning. For the reaching
phase the manipulator learns how to generate trajectories
to reach or retract from the target. The learning is based
on a set of trajectories demonstrated in advance by the
operator. The turning phase is accomplished using a hybrid
force/motion control strategy. Furthermore, a reactive decision
making system is devised to react to the disturbances and
uncertainties arising during the valve turning process. The
reactive controller monitors the changes in force, movement of
the arm with respect to the valve, and changes in the distance
to the target. Observing the uncertainties, the reactive system
modulates the valve turning task by changing the direction and
rate of the movement. A real-world experiment with a robot
manipulator mounted on a movable base is conducted to show
the efficiency and validity of the proposed approach.

I. INTRODUCTION

Robotic valve turning is a challenging task specially in
unstructured environments with increasing level of uncer-
tainty (e.g., underwater). The existing disturbances in the
environment or the noise in the sensors can endanger both
the robot and the valve during the operation. For instance,
the vision system may be occluded and thus introduce a
delay in updating the data, or even providing the system
with wrong information. Exerting huge forces/torques on the
valve by the robot, is another hazardous and highly probable
situation. In such cases an autonomous system that is capable
of observing the current state of the system and reacting
accordingly, can help to accomplish the mission successfully
even in the presence of noise.

Robotic valve manipulation contains a number of complex
and challenging subtasks. There seem to be few published
description of attempts directly related to this task. Prior
works in industrial robotic valve operation, generally use
nonadaptive classical control and basic trajectory planning
methods. In [2], Abidi et al., tried to achieve inspection and
manipulation capabilities in the semi-autonomous operation
of a control panel in a nuclear power plant. A 6-DoF indus-
trial robot equipped with a number of sensors (e. g., vision,
range, sound, proximity, force/torque, and touch) was used.
The main drawback is that their approach is developed for
static environments with predefined dimensions and scales.
For instance, the size and position of the panel, the valve,
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Fig. 1: The experimental set-up for the valve turning task.
The valve is detected and localized using an RGB-D sensor
through an AR-marker. The manipulator is equipped with a
gripper and is mounted on a movable (wheeled) table. During
the execution of the task, a human can create a random
disturbance by perturbing the base of the robot.

and other objects in the room are manually engineered into
the system. More recent approaches generally use sensor-
based movement methods which implies that the robot
trajectories have not been programmed off-line. In [3], the
robot is equipped with a torque sensor and the valve which
is equipped with a proximity sensor is detected using a
vision sensor. The authors focus on a model-based approach
to avoid over-tightening/loosening of the valve. The other
phases of the valve manipulation process are accomplished
using classical methods. In their next research [4] the authors
develop the valve manipulation task in outdoor environment.
The vision sensor is replaced with a thermal camera, and the
(round) valve is replaced with a T-bar valve, which is easier
for the robot to manipulate. The main focus of [4] is detecting
the valve and avoiding the over-tightening/loosening of the
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valve in an early stage using a model-based technique.
Other groups have also investigated valve turning. In [5]

a framework for valve turning is proposed using a dual-arm
arial manipulator system. The framework is built based on
teleoperation and employs motion detection, voice control
and joystick inputs. A user-guided manipulation framework
is proposed in [6]. Although the planning algorithm generates
the robot motions autonomously, the search process and the
object detection phase are accomplished by a human operator
and the result is passed to the robot. A dual-arm impedance
hierarchical controller is devised in [7] that employs the
upper body kinematics and dynamics of a humanoid robot
for reaching and turning a valve.

Compared to our previous research [8], [9], this work
provides the following three contributions: (i) in our previous
research the turning phase was done by programming the
turning motion into the robot. In this paper, on the other
hand, a force control strategy is proposed for handling the
turning phase; (ii) similar to the previous research a Reactive
Fuzzy Decision Maker (RFDM) system is designed in order
to react to external disturbances and sudden movements. The
reactive system in the previous work monitors only the rela-
tive movement between the gripper and the valve, whereas,
the new reactive system, also takes into consideration the
distance between the gripper and the valve, and the exerted
forces to the end-effector besides the relative movement. The
acquired RFDM system shows more efficiency and better
sensitivity which results in a safer valve turning process;
(iii) in our previous research an Optitrack system was used
which captures real-time 3D position and orientation of a
rigid body using a number of motion capture cameras and a
set of markers. Although the Optitrack system is very precise,
it cannot be used in outdoor environment. In this work, on
the other hand, an RGB-D sensor is used that provides the
experiment with a more realistic conditions.

All presented experiments in this work were conducted
in a lab environment. The experimental set-up for all the
experiments is shown in Figure 1. Our future work includes
investigating and accomplishing the autonomous robotic
valve manipulation in underwater environment which is one
of the most challenging tasks defined in the PANDORA [1]
project.

II. METHODOLOGY

The valve turning task comprises two main phases: reach-
ing and turning. First, the robot have to learn how to reach
the valve. Imitation learning approach which is designed spe-
cially to learn trajectory-based tasks, is a promising choice
to learn the reaching skill [10]. In order to reproduce the
reaching skill towards the target, the robot utilizes feedback
from the RGB-D sensor.

When the robot is able to reproduce the reaching skill
a hybrid force/motion control strategy handles the turning
phase. Hybrid force/motion control is a well-established
method [11], [12], [13]. Using such hybrid strategy, the
force controller can maintain the contact between the valve
and the gripper while the motion controller turns the valve.
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Fig. 2: A high-level flow diagram illustrating the different
components of the proposed approach.

The hybrid force/motion controller utilizes feedback from a
Force/Torque (F/T) sensor mounted between the end-effector
and the gripper. Subsequent to the turning phase, the robot
employs the reaching skill in reverse to retract from the valve.

In order to develop an autonomous system, the robot
needs to deal with uncertainties. To emulate the uncertainties
in our experiments, we manually apply disturbances to the
system. The disturbances during the execution of the task are
monitored and handled by a Reactive Fuzzy Decision Maker
(RFDM). Although such reactive system can be implemented
using a thresholding method, the fuzzy system is chosen.
The reason is that the fuzzy system provides a continuous
decision surface and it infers from a set of human-defined
linguistic rules. The RFDM module, monitors the position
of the gripper and the valve together with the magnitude
of the forces and torques applied to the end-effector from
the valve. Using this information, RFDM generates decisions
that regulate the movements of the robot during the process.
For example, RFDM halts the process when the magnitude
of the force increases due to an undesired movement. In
addition, RFDM also controls the rate of the motion. For
instance, when there is no external disturbance, the robot
can reach the valve faster.

As depicted in Figure 1 the experimental set-up for all
the conducted experiments consists of a 7-DoF KUKA-
LWR manipulator mounted on a movable (wheeled) table,
a (T-bar shaped) mock-up valve mounted on the wall in
the robot’s workspace, a gripper designed for grasping and
turning the valve, an ATI Mini45 Force/Torque (F/T) sensor
which is sandwiched between the gripper and the robots end-
effector, and an ASUS Xtion RGB-D sensor for detecting and
localizing the valve.

Figure 2 illustrates a flow diagram of the proposed ap-
proach. The RGB-D sensor detects the pose of the valve
which is used by the reaching module and RFDM. The
F/T sensor monitors the force/torque applied to the gripper,
which is used by the turning module and RFDM. Observing
the inputs provided by the sensors, RFDM generates proper
decisions in order to modulate the behavior of the robot
during the process. The RFDM system is tuned by collecting
data from a human expert using optimization techniques.

III. IMITATION LEARNING

Imitation learning enables manipulators to learn and re-
produce trajectory-based skills from a set of demonstra-
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tions [10]. The demonstrations are provided either by tele-
operation or through kinesthetic teaching. One of the most
widely-used representations for trajectory-based skills is Dy-
namical Movement Primitives (DMP) [14]. DMP allows to
learn a compact representation of the reaching skill using the
recorded demonstrations. In this paper, we use the extended
DMP approach proposed in [15] which also encapsulates
variation and correlation information of the demonstrated
skill as a mixture of dynamical systems. In order to reach a
target, in this approach a set of virtual attractors is utilized.
The influence of these attractors is smoothly switched along
the movement on a time basis. A proportional-derivative
controller is used to move the end-effector towards the
target. In contrast to the original DMP, a full stiffness
matrix associated with each primitives is considered. This
allows to capture the variability and correlation information
along the movement. The set of attractors is learned through
weighted least-square regression, by using the residual errors
as covariance information to estimate stiffness gain matrices.

During the demonstration phase, multiple desired trajec-
tories are demonstrated by a human operator through kines-
thetic teaching. Each demonstration m ∈ {1, . . . ,M} consists
of a set of Tm positions x, velocities ẋ, and accelerations ẍ, of
the end-effector in Cartesian space where x ∈ R3. A dataset
is formed by concatenating the P = ∑

M
m=1 Tm data points. A

desired acceleration is computed based on a mixture of L
proportional-derivative systems as follows:

ˆ̈x =
L

∑
i=1

hi(t)[KP
i (µ

x
i − x)− kvẋ], (1)

where ˆ̈x is the desired acceleration, KP
i are the stiffness

matrices, µx
i are the centers of the attractors in Cartesian

space, hi(t) are the weighting functions, and kv is the
derivative gain.

During the demonstration phase, the trajectories are
recorded independent of the explicit time. Instead, in order
to create an implicit time-dependency, t = −ln(s)/α , a
canonical system is defined as follows:

ṡ =−αs (2)

where s is the decay term initialized by s = 1 that mono-
tonically converges to 0. Furthermore, a set of Gaussian
basis functions are defined as N (µT

i ,Σ
T
i ) in time space,

where the centers µT
i are equally distributed in time and the

variance parameters ΣT
i are set to a constant value inversely

proportional to the number of states. α is a fixed value which
depends on the duration of the demonstrations.

By determining the weighting functions hi(t) through the
decay term s, the system sequentially converges to the set
of attractors. Stiffness matrices KP

i and the centers µx
i are

learned from the observed data using weighted least-square
regression. In the reproduction phase the system uses the
learned weights and set of attractors to reproduce a trajectory
to reach the target.

The recorded set of demonstrations is depicted as black
curves in Figure 3. Following the described approach, the

system learns a set of attractors which can be seen in the
2D plots in Figures 3a and 4a as blue ellipsoids. Using
the learned set of attractors the robot is able to reproduce
a new trajectory from an arbitrary initial position towards
the target. Each red trajectory in Figures 3 and 4 illustrates
a reproduction. In both figures the goal, (the valve in our
experiments), is shown in yellow. A snapshot of the reaching
skill reproduced by the robot is shown in Figure 5.

In this paper, we introduce a new capability based on the
implicit timing: a reversible behavior of the system. This
new capability enables the robot to perform the following:
(i) reactive behavior by switching the direction of the move-
ment towards the target or away from it; (ii) after the task is
finished the robot uses this capability to retract the arm. The
advantage of the presented capability is that by learning just
the reaching skill the robot is capable of reproducing multiple
behaviors including reaching and retracting, and switching
between them. This can be achieved by changing the timing
equation from t =−ln(s)/α to t = t f inal + ln(s)/α .

Figure 4 illustrates a reproduction from an arbitrary initial
position towards the target. It can be seen that, in the middle
of the movement the robot reverses the motion and moves
backwards. It has to be commented that, by executing the
reverse motion, the robot goes back to the center of the first
attractor.

IV. FORCE/MOTION CONTROL STRATEGY

Once the robot learns the reaching skill, the turning phase
begins. In this phase, the goal of the robot is to turn the valve
(by 180◦ from its initial configuration) while maintaining the
position of the gripper. To control the forces and torques
applied to the end-effector, a hybrid force/motion control
approach is used [11], [12], [13]. Hybrid force/motion con-
troller is preferred to be used in this application because
during the turning phase a zero force controller can reduce
the undesired forces and torques.

The proposed hybrid strategy is designed for 6-axes full
space control. Forces and torques are controlled in the 5-
axes while motion is controlled around the z-axis in order to
turn the valve. The assigned coordinate system is depicted
in Figure 1 which is set with respect to the initial pose of
the gripper. The z-axis (surge and roll) is normal to the end-
effector’s palm. The y-axis (sway and pitch) is perpendicular
to the z-axis and pointing sideways. And the x-axis (heave
and yaw) is perpendicular to the z− y plane [16]. A desired
normal force is set along the z-axis in order to maintain the
gripper in contact with the valve. Zero forces and torques are
specified along the x- and y-axes. The zero desired values of
the forces and torques are designed to lessen the reactionary
forces and torques along (around) the axes during the valve
turning process.

The hybrid force/motion controller is suitable for au-
tonomous mobile manipulation [17]. In underwater environ-
ment the valve turning task is more difficult due to the highly
unstructured and uncertain environment. Also, the valve can
be rusty and sensitive to high forces/torques.

We specify the forces and torques as follows:
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Fig. 3: The recorded trajectories that form the set of demon-
strations (black), and the reproduced trajectory from an arbi-
trary initial position (red) towards the target are illustrated.
The blue ellipses show the attractors and the yellow square
shows the target (the valve).

Fcon = Fdes +kp(Fdes−Fact)

Tcon = Tdes +kp(Tdes−Tact)
(3)

where F and T denote forces and torques respectively, and
subscripts des, act, and con denote the desired, actual, and
control parameters respectively. In the following sections,
some experimental results are explained.

A. Valve Turning with Stationary Base

In the first set of experiments the base of the robot
remained stationary during the valve turning task. So no
external disturbances are applied to the valve or the gripper.
In this case, to ensure proper contact between the valve and
the gripper during the turning phase a 20 N force along
the z-axis is applied, Fz

des = 20 N. The other desired forces
and torques are set to zero Fx

des = Fy
des = T x

des = T y
des = 0.

The desired roll angle is specified to be 180◦ clockwise
with respect to the current orientation of the end-effector.
The duration of turning is set to 10s. The joint angle
displacements through the valve turning execution are shown
in Figure 6, where the last joint moved from −90◦ to 90◦
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Fig. 4: The recorded trajectories that form the set of demon-
strations (black), and the reproduced trajectory from an arbi-
trary initial position (red) are illustrated. The robot retracts
from the middle of the path by receiving a command from
RFDM.

angle, while the rest of the joint angles move slightly in order
to dissipate the forces generated at the end-effector during
the execution of the task.

It can be seen in the graphs that the first 5s of the operation
is used for the gripper to make contact with the valve and
then dissipate the impact force. From 5s to 15s, the valve
is turned by the motion controller and the generated forces
and torques at the end-effector are recorded. Figure 7 (top
figure) shows that the force along the z-axis is maintained at
+20 N right after the impact forces have been dissipated. The
controller can maintain the magnitude of the force before,
during, and after the valve turning successfully.

The exertion of the necessary torque to turn the valve and
the required force to maintain the contact between the valve
and the gripper, generates residual forces and torques at the
end-effector. In order to dissipate these reaction forces along
the x- and y-axes, a set of forces in range −5 to +5 N are
generated. During the turning phase until the 20s of the task,
the z-axis torque averaged at around +1 Nm. This is shown
in Figure 8 (top figure).

On the other hand, the torque around x-axis is maintained

369



Fig. 5: The robot reaching the valve during the reproduction
phase.
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Fig. 6: Joint angles during the valve turning task with
stationary base.

at −0.5 Nm at the start of the contact until the end of the
turning phase, and then decreased to 0 Nm by the end of
the task. The torque around the y-axis moved from its initial
torque, (after impact that is around −0.5 Nm) to −1 Nm in
an attempt to dissipate the residual torques. However, due to
the physical limitation of the valve, (i.e., the gripper has a
slot along the y-axis), it cannot create the necessary torque-
resistance in order to dissipate the residual torque.

B. Valve Turning with Moving Base

In the next set of experiments the base of the manipulator,
that is mounted on a wheeled table, is moved manually to
create a disturbance during the turning task. These oscilla-
tory disturbances simulate the dynamics of currents in the
underwater environment. In this experiment, the duration of
the valve turning process is set to 30s to give enough time to
the operator to disturb the manipulator. The recorded force
and torque data during the valve turning with perturbed base
are shown in bottom sub-figures in Figures 7 and 8. The
perturbation is generated from 3s up to 33s of the overall
time.

V. LEARNING OF REACTIVE BEHAVIOR

In robotic valve turning in the real world, a sudden
movement of the arm can endanger both the valve and the
manipulator. Also, if the robot exerts huge and uncontrolled
amount of force/torque during the turning phase, it may break
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Fig. 7: End-effector forces during the valve turning task.

the valve off. In order to prevent such behaviors and devel-
oping a more autonomous and reliable system, a reactive
decision maker system is designed. This system, which is
a Reactive Fuzzy Decision Maker (RFDM), evaluates the
dynamic behavior of the system and regulates the robot’s
movements reactively.

We chose fuzzy systems because they are based on lin-
guistic rules and the parameters that specify the membership
functions have clear physical meanings. Also, there are
methods to choose good initial values for the parameters of
a fuzzy system [18].

The RFDM system in our previous research [8], monitors
the relative movement between the valve and the end-effector
and generates decisions according to the defined linguistic
rules. One of the drawbacks of the previous reactive system is
that, it is independent of the distance between the gripper and
the valve. This means that despite the distance between the
gripper and the valve, the robot shows identical behaviors.
The proposed RFDM in this paper, on the other hand,
comprises two more inputs. One is the distance between
the gripper and the valve. This extra information gives
the RFDM the capability to behave more adaptively. For
instance, when the gripper is about to grasp the valve, the
new RFDM generates more watchful decisions and increases
the sensitivity of the robot’s movements with respect to
the disturbances. The other input is the force/torque values
applied to the gripper and reacts to the uncertainties. For
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Fig. 8: End-effector torques during the valve turning task.

instance, RFDM retracts the arm when it observes a sudden
increase in force/torque during the turning phase.

A. Design of the Fuzzy System

The proposed fuzzy system comprises three inputs: a) the
distance between the gripper and the valve (the norm of the
distance vector); and b) the relative movement between the
valve and the gripper (in x− y plane); c) the forces and
torques applied to the valve from the gripper.

All the inputs are first normalized in range [0,1] and then
are sent to the RFDM system. The third input is provided
by the F/T sensor which has a sampling interval equal to
1 ms. The output of the sensor consists of three force and
three torque elements. In this case, the torque is multiplied
by a factor to be numerically comparable to the value of the
force. The normalizing equation is as follows:

γ =
‖F‖+β‖T‖

Fmax
(4)

where γ ∈ [0,1], β = 10 is a constant factor used to level-off
the range of values between the forces and the torques, and
Fmax = 30 N is set as the maximum threshold.

Monitoring the relative movement between the valve and
the gripper, the system can detect oscillations with different
amplitudes and frequencies. For instance, if the end-effector
is reaching the valve, and the system senses an oscillation
with say Medium amplitude the fuzzy system reacts to
that by halting the arm. To simulate such behavior in the

experiments, the operator manually moves the table of the
robot back and forth. Moreover, considering the distance
between the gripper and the valve, the system can change its
behavior adaptively. For example, if the gripper is Far from
the valve, even in the presence of a disturbance, the robot still
moves towards the valve. On the other hand, if the gripper
is in the vicinity of the valve the robot reacts to smaller
oscillations and waits or even retracts the arm. Furthermore,
measuring the force/torque magnitudes applied to the gripper,
generated by colliding either to the valve or other objects,
the system reacts according to the defined rules.

The output of the RFDM system is the reactive decision
which is a real number in range [−1,1]. The sign of the
output specifies the direction of the movement (i.e., + for
going forward and − for going backward). For instance, −1
means to retract with 100% speed, 0 means to stop, and 1
means to approach with 100% speed. Therefore, the RFDM
system not only decides the direction of the movement, but
also specifies the rate of the movement.

In order to design the fuzzy system, we consider the
inputs to be u = [u1,u2,u3]

T and the output as r. Firstly,
Ni(i = 1,2,3) fuzzy sets, A1

i ,A
2
i , ...,A

Ni
i , are defined in range

[0,1], which are normal, consistent, and complete with Gaus-
sian membership functions µA1

i
,µA2

i
, ...,µ

A
Ni
i

. Then, we form
Nrule =N1×N2×N3 (3×4×3= 36) fuzzy IF−T HEN rules
as follows:

IF u1 is Ai1
1 and u2 is Ai2

2 and u3 is Ai3
3 T HEN y is Bi1i2i3

(5)
Moreover, 7 constant membership function in range [−1,1]

are set for the output. Finally, the TSK fuzzy system is con-
structed using product inference engine, singleton fuzzifier,
and center average defuzzifier [18]:

r =
∑

N1
i1=1 ∑

N2
i2=1 ∑

N3
i3=1 yi1i2i3 µ

i1
A1
(u1)µ

i2
A2
(u2)µ

i3
A3
(u3)

∑
N1
i1=1 ∑

N2
i2=1 ∑

N3
i3=1 µ

i1
A1
(u1)µ

i2
A2
(u2)µ

i3
A3
(u3)

(6)

Since the fuzzy sets are complete, the fuzzy system is
well-defined and its denominator is always non-zero. The
designed fuzzy system cannot be illustrated in a single 3D
plot because it consists of three inputs and one output. We
plotted the fuzzy surface for input variables u2 and u3 over
a single value of the variable u1. So each surface in Figure 9
is related to a fixed value of u1. It can be seen from Figure 9
that RFDM shows more sensitive and cautious behaviors as
the distance to the valve decreases.

B. Tuning the Fuzzy System

In order to tune the parameters of the devised fuzzy
system, the subconscious knowledge of a human expert is
derived. In this case, the human expert knows what to do
but cannot express exactly in words how to do it. In order to
extract the subconscious knowledge of the human expert, a
tutor simulates the effect of the disturbances (e.g., underwater
currents) by moving the wheeled table, while the robot
tries to reach and turn the valve. Simultaneously, using a
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Fig. 9: Fuzzy inference system surface including three inputs
(u1,u2,u3). The input specifying the distance between the
robot and the valve u1 affects the sensitivity of the designed
fuzzy system according to the distance from the valve. Each
surface shows a fixed value of the u1 input for the whole
range of the u2 and u3 inputs.
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slider button, another tutor regulates the movements of the
manipulator while it is following the reproduced trajectory or
turning the valve. The tutor applies appropriate continuous
commands in range [−1,1], to the system, where −1 means
go backward along the trajectory with 100% speed and 1
means go forward along the trajectory with 100% speed.
For instance, when the base of the robot is being oscillated
say with a Big amplitude, the tutor smoothly moves the slider
backwards to retract the arm and prevent it from any collision
with the valve or the panel. All data, including the position of
gripper and the valve, and the tutors commands are recorded
during the learning process. The recorded data is then used

to tune the RFDM in off-line mode.
The error between the recorded data from the tutor, which

is a fuzzy surface, and the output of the un-tuned fuzzy
system which is also a fuzzy surface, is used to make an
objective function. The objective function can be minimized
using various optimization algorithms. In [8], we applied four
different optimization algorithms including gradient-descent,
cross entropy method [19], covariance matrix adaptation-
evolution strategy (CMA-ES) [20], and modified Price algo-
rithm [21]. The number of optimization parameters for this
problem is equal to the number of membership functions
multiplied by two (center and standard deviation), plus the
number of constant outputs. In our design the number of
optimization parameters is equal to 79 (36 Gaussian Mem-
bership Functions × 2 parameters for each Gaussian + 7
constant outputs). In this paper we use CMA-ES for the
tuning task, because CMA-ES is typically applied to search
space dimensions between three and a hundred [20].

C. Experimental Result of the Reactive System

In this section, the behavior of the proposed RFDM system
is investigated during a real-world valve turning experiment.
All three inputs of the reactive system are illustrated in
the left side of Figure 11. The first input, the distance,
shows that initially the gripper was located far from the
valve and gradually approached towards it. The second input,
the relative movement, shows that, at some point a relative
movement between the gripper and the valve is occurred.
The relative movement was created manually by moving the
robot’s base. And the third input, the force, shows small
values during the process but at the end a sudden jump in
the force was occurred. The jump in the force magnitude
was generated manually by pushing the manipulator towards
the valve during the turning phase. The generated decision
commands by the RFDM system is plotted in the right sub-
plot of Figure 11. The effect of both the manual oscillation
of the base and the manual push on the gripper is observed
by RFDM and proper decisions are generated. During the
manual oscillation of the base, the RFDM system decreases
the rate of the motion towards zero. However, it does not
retract the arm because at this point the gripper has not
reached the valve yet. Also by sensing the force created by
the sudden push, the RFDM system retracts the gripper from
the valve.

VI. DISCUSSION

In our experiments the robot is mounted on a wheeled
base which is used to emulate the disturbances. There is
a significant level of friction between the wheels and the
ground due to the weight of the robot and the base itself.
While the robot maintaining the contact with the valve
by employing a force controller, such friction prevents the
base from moving due to the reactionary forces created
between the robot and the valve. In underwater environment
in which the robot is floated, the force may exceed the
inertia of the vehicle and move it. One solution is to use a
combined Vehicle-Arm control strategy in order to overcome
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Fig. 11: The recorded set of inputs and the generated decision
commands by the RFDM system during a real-world valve
turning experiment.

this unwanted behavior. The controller generates more thrust
to keep the position of the robot while keeping the contact
between the arm and the valve.

Employing the hybrid force/motion controller, the robot’s
reaction to a stuck valve can happen simultaneously accord-
ing to three different scenarios. First, due to the desired
force specified normal to the valve, the gripper will continue
to exert a normal force to maintain contact. Second, due
to the desired zero forces and torques along (and around)
the x- and y-axes, the gripper will automatically adjust its
gripping configuration such that the reactionary forces and
torques along (and around) these axes are lessened. Lastly,
in applying the required torque to turn the valve, the gripper
will apply the maximum possible torque around the z-axis,
until the motors get saturated.

VII. CONCLUSIONS

We have proposed a learning method for reactive robot
behavior to deal with the challenging task of autonomous
valve turning. The autonomous valve turning consists of
two main phases: reaching and turning. Imitation learning
is used to learn and reproduce the reaching phase. A hybrid
force/motion controller is devised to accomplish the turning
phase. In order to increase the autonomy of the system a
reactive fuzzy decision maker is developed. This module
evaluates the dynamic behavior of the system and modulates
the robots movements reactively. The validity and perfor-
mance of our approach is demonstrated through a real-world
valve turning experiment.
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