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Abstract— We present a novel geometric framework for intu-
itively encoding and learning a wide range of trajectory-based
skills from human demonstrations. Our approach identifies
and extracts the main characteristics of the demonstrated skill,
which are spatial correlations across different demonstrations.
Using the extracted characteristics, the proposed approach
generates a continuous representation of the skill based on
the concept of canal surfaces. Canal surfaces are Euclidean
surfaces formed as the envelope of a family of regular surfaces
(e.g. spheres) whose centers lie on a space curve. The learned
skill can be reproduced, as a time-independent trajectory, and
generalized to unforeseen situations inside the canal while its
main characteristics are preserved. The main advantages of
the proposed approach include: (a) requiring no parameter
tuning, (b) maintaining the main characteristics and implicit
boundaries of the skill, and (c) generalizing the learned skill
over the initial condition of the movement, while exploiting the
whole demonstration space to reproduce a variety of successful
movements. Evaluations using simulated and real-world data
exemplify the feasibility and robustness of our approach.

I. INTRODUCTION
The main goal of Learning from Demonstration (LfD)

approaches is to reduce the need for manual robot pro-
gramming [1]. These approaches should ultimately enable
even non-experts to teach new skills to robots interactively
through demonstrations. Using a set of successful examples
of a skill performed by a human teacher, LfD techniques
encode the skill in a model that its representation varies
among different approaches. The robot then should be able to
employ the model to generalize the skill to novel situations
autonomously. However, it has been shown that current
robotic platforms are not good at being autonomous and need
human assistance constantly [2]. The results from the recent
DARPA Robotics Challenge (DRC) highlight that despite
the existence of trajectory-based LfD techniques, the vast
majority of the robot motions executed during the challenge
were hand-coded or teleoperated. The main factors that
make such approaches highly impractical (especially for non-
experts) include the number of parameters to be tuned and
their corresponding tuning methods. In addition, the tuning
process requires that the user understands how the system
reacts to such adjustments. So the level of complexity of the
existing representations can be counted as an important factor
that prompts a need for an efficient yet simpler approach.

To address these issues, we propose a novel parameter-
free LfD approach based on Differential Geometry that en-
ables robots to acquire novel trajectory-based skills through
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Fig. 1: A Jaco2 arm learns a circular movement in task-space while
avoiding an obstacle. Five demonstrations (red curves) are captured
through kinesthetic teaching and the skill is encoded as a canal
surface (gray). Arrows show the direction of the movement.

demonstrations. This approach encodes the demonstrated
skill as a geometric model. The model is composed of a
regular curve and a surface in Cartesian space called a
Canal Surface [3]. The constructed canal surface extracts
and represents the main characteristics of the skill, which
are the spatial correlations across different demonstrations
that are not specified by the user explicitly. The proposed
representation is visually perceivable and can reproduce the
learned skill as a time-independent trajectory using a simple
geometric rule. The skill can be generalized to unforeseen
situations inside the canal while the main characteristics of
the motion are preserved. The proposed approach: a) requires
no parameter tuning, b) maintains the important character-
istics and implicit boundaries of the skill, c) generalizes
the learned skill over the initial condition of the movement,
while exploiting the whole demonstration space to reproduce
a variety of successful movements.

II. RELATED WORK
In this work, we focus on learning, representing, and

generalizing of trajectory-based skills. Therefore, we review
related work on trajectory-based skill learning from demon-
strations. Over the past two decades, several trajectory-based
LfD approaches have been developed [1]. These approaches
use a variety of techniques to encode a demonstrated skill
and retrieve a generalized form of the trajectory. Many of
them use regression-based techniques to represent the given
set of demonstrations using a probabilistic representation [4],
[5]. One of the most well-known works in this group is by
Calinon et al., [6], which builds a probabilistic representa-
tion of the demonstrations using Gaussian Mixture Model
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(GMM) and retrieves a smooth trajectory using Gaussian
Mixture Regression (GMR). Similarly, Gaussian Process
(GP) Regression generalizes over a set of demonstrated
trajectories [5], however, GP is computationally expensive.
To address this issue local Gaussian process regression
was proposed to extract the constraints of a demonstrated
skill [7]. Another approach similar to GP, called LfD by Aver-
aging Trajectories (LAT), uses only one-dimensional normal
distributions [8]. Both GP and LAT cannot extract constraints
from the demonstrations with objects aligned parallel to a
Cartesian coordinate axis. GMM/GMR, GP, local GP, and
LAT are time-dependent approaches that require an explicit
time-indexing and are useful for encoding skills that are
deemed to be performed in a fixed amount of time. The skills
learned using time-independent approaches, on the other
hand, can be temporally scaled [9]. Another disadvantage of
these approaches is that they require parameter tuning (e.g.
number of Gaussian components, scale, weight, kernel).

Ijspreet et al., showed that dynamical systems can also
be used to encode and reproduce trajectories [10]. Dynamic
Movement Primitives (DMPs) represent demonstrated tra-
jectories as movements of a particle subject to a set of
spring-damper systems perturbed by an external force. The
shape of the movement is approximated using Gaussian
basis functions and the weights are calculated using locally
weighted regression. DMPs are implicitly time-dependent
and this makes the system sensitive to temporal perturba-
tions. In addition, using DMPs, one has to tune parameters
of the dynamical systems, such as time constants and scaling
factors.

To tackle the problem of real-time motion planning, Ma-
jumdar and Tedrake extended the idea of elastic bands [11]
and proposed an approach to approximate a boundary around
a trajectory, which can be visualized as a funnel [12].
Their approach computes a library of funnels and their
corresponding open-loop controllers off-line, and then uses a
closed-loop system to generate trajectories from the library in
real-time that can deal with obstacles. The computed funnels
illustrate a similar representation to the proposed approach in
this paper. However, our approach does not require extensive
off-line computation. To reflect a human’s intention, Dong
and Williams proposed an approach called probabilistic flow
tubes that represents continuous actions (i.e. trajectories)
by extracting covariance data [13]. The learned flow tube
consists of a spine trajectory and 2D covariance data at each
corresponding time-step. Their representation can be seen as
a special case of our approach in which the cross-section is
formed using covariance data.

III. METHODOLOGY

The concept of canal surfaces, first introduced by Hilbert
and Cohn-Vossen [3], plays a fundamental role in descriptive
geometry. They are also known as Generalized Cylinders,
which can be explained as a representation of an elongated
object composed of a spine and a smoothly varying cross-
section [14]. In the context of Computer Aided Graphic De-
sign (CAGD), canal surfaces are used for shape reconstruc-
tion, construction of smooth blending surfaces, and transition

surfaces between pipes [15]. In Robotics, canal surfaces have
been used for finding flyable paths for unmanned aerial
vehicles [16], but have not previously been learned.

A. Canal Surfaces
Let Φu be the one-parameter pencil1 of regular implicit

surfaces2 with real-valued parameter u. Two surfaces cor-
responding to different values of u intersect in a common
curve. As u varies, the generated surface is the envelope3 of
the given pencil of surfaces [17]. In 3D space, the envelope
can be defined using the following equations:

Φu : F(x1,x2,x3,u) = 0, (1)
∂F(x1,x2,x3,u)/∂u = 0, (2)

where Φu consists of implicit C2−surfaces which are at least
twice continuously differentiable.

Definition: A canal surface, Cu, is an envelope of the one-
parameter pencil of spheres and can be written as

Cu : f (x;u) := {(c(u),r(u)) ∈ R3,1|u ∈ R}, (3)

where the spheres are centered on a regular curve Γ : x =
c(u) ∈ R3 in Cartesian space, known as the spine curve or
directrix. The radius of the spheres are given by the function
r(u) ∈ R, called radii, which is a C1-function. The non-
degeneracy condition is satisfied by assuming r > 0 and
|ṙ| < ‖ċ‖ [15]. For the one-parameter pencil of spheres,
Equation (3) can be written as

Cu : f (x;u) := (x−c(u))2−r(u)2 = 0. (4)

An example of such surfaces is depicted in Fig. 2a that
has a circular cross-section. Constructing a canal surface by
the pencil of ellipsoids provides us with canal surfaces with
elliptical cross-sections that can be written as follows:

Cu : f (x;u) := {(c(u),r(u)) ∈ R3,2|u ∈ R}, (5)

where the radii function r(u) ∈ R2 defines the major and
minor axes lengths for the ellipses.

B. Parametric Representation
To form a parametric representation of (4), we use an

orthonormal frame called Frenet-Serret or TNB. This frame
is suitable for describing the kinematic properties of a
particle moving along a continuous, differentiable curve in
R3. TNB is composed of three unit vectors eT , eN , and eB,
where eT is the unit tangent vector, and eN and eB are the
unit normal and unit binormal vectors, respectively. For a
non-degenerate directrix curve Γ : x(s), parameterized by its
arc-length parameter s, the TNB frame can be defined using
the following equations:

eT = dx(s)/ds, (6)

eN =
deT

ds
/‖deT

ds
‖, (7)

eB = eT × eN . (8)

1A pencil is a family of geometric objects sharing a common property
(e.g. spheres).

2An implicit surface is a surface in Euclidean space that can be repre-
sented in F(x(u),y(u),z(u)) = 0 form.

3An envelope is a curve/surface tangent to a family of curves/surfaces
(2D or 3D).
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Fig. 2: Six canal surfaces sharing the same directrix with different radii functions. The cross-section of a canal surface can be a circle,
an ellipse or generally a closed B-spline. It also can resize and/or reshape smoothly along the directrix.

Applying the second condition of envelopes from (2) to
the formula of a canal surface defined by (4) gives

∂Cs

∂ s
= 2(x−c(s))eT−2r(s)

dr
ds

= 0. (9)

For each value of s, (9) represents a circle orthogonal to
the unit tangent vector of the directrix. Thus the canal surface
can be represented as a set of circles formulated as

Cs : f (s,v) = c(s)+ (10)

r(s)

(
−eT

dr
ds

+

√
1−(dr

ds
)2 (eB sin(v)−eN cos(v))

)
,

where v ∈ [0,2π] varies along the circle.
Calculating Frenet-Serret frames for real data is prone to

noise. The reason is that at some points the derivative vector
deT
ds vanishes and the formulae cannot be applied anymore

(i.e. eN cannot be calculated). This problem can be addressed
by calculating the unit normal vector eN as the cross product
of a random vector by the unit tangent vector eT .

C. Variations
Equation (10) denotes the parametric representation of a

canal surface with a circular cross-section that can vary along
the directrix (Fig. 2). As mentioned before, by replacing
spheres with ellipsoids we can construct canal surfaces with
elliptical cross-sections. In general, the cross-section may
not only resize but also reshape from one frame to the
next when the TNB frame translates along the directrix.
Such variations can be represented using different shapes
and techniques such as polygons, polynomials, parabolic
blending, cone sections, and B-splines[14]. Such character-
istics make canal surfaces a suitable candidate for modeling
complicated constraints of trajectory-based skills captured
through demonstrations.

IV. SKILL LEARNING USING CANAL SURFACES
In this section, we present how the above formulation can

be used to represent and reproduce demonstrated robot tra-
jectories. For a given skill, we assume that multiple examples
of the motion are demonstrated and captured as a set of tra-
jectories. A variety of demonstration techniques can be used
to perform the demonstrations, such as teleoperation and
shadowing; in our experiments, we use kinesthetic teaching
(see Fig. 3). Given the set of demonstrations, the proposed
approach first calculates the directrix (i.e. an average form of
the movements) and then extracts the main characteristics of
the set (i.e. spatial correlations across demonstrations) and
forms the radii function by identifying its boundaries. When
the canal surface is constructed, a geometric ratio rule is

used for generating new trajectories starting from arbitrary
initial poses. In this section, we explain both learning and
reproduction phases of the proposed approach in detail.
Algorithm 1 shows a pseudo code of the proposed approach.

A. Canal Surface Generation

Consider n different demonstrations of a task are per-
formed and captured in task-space. For each demonstration
the 3D Cartesian position of the robot’s end-effector is
recorded over time as ξ̂

j
= {ξ j

1 ,ξ
j

2 ,ξ
j

3} ∈R3×T j
, where j =

1 . . .n denotes the jth demonstration and T j is the number of
data-points within the trajectory. Since T j can vary between
demonstrations, we use interpolation and resampling in order
to gain a frame-by-frame correspondence mapping among
the recorded demonstrations and align them temporally. First,
a set of piecewise polynomials is obtained using cubic spline
interpolation for each demonstration. Then we generate a set
of temporally aligned trajectories by resampling from the
obtained polynomials. Another advantage of this technique
is when the velocity and acceleration data are unavailable,
the first and second derivatives of the obtained piecewise
polynomials can be used instead. This process provides us
with the set of n resampled demonstrations ξ ∈R3×N×n, each
of which consists of N data-points. An alternative widely
used solution is employing Dynamic Time Warping [18].

Estimating the Directrix: To estimate the directrix, Γ,
we calculate the directional mean value for the given set of
demonstrations (Line 4 in Algorithm 1). Let m ∈ R3×N be
the arithmetic mean of ξ . Note that m is the space curve
that all the spheres are centered on to form a canal surface.
Alternatively, the directrix can be produced using GMR [6].
In that case, GMR generates the directrix by sampling from
the statistical model learned by GMM. However, using GMR
requires defining a time vector explicitly.

Estimating the Radii: The next step is to calculate the
cross-section of the canal surface at each step s along the
directrix. The circumference of a cross-section represents
the implicit local constraints of the task (i.e. boundaries)
imposed by the set of demonstrations. For instance, when
all the trajectories pass through a narrow area, the user is

Fig. 3: Kinesthetic demonstration of reaching to an object (yellow
box). Captured task-space pose of the end-effector is used as input.
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Algorithm 1 Skill Learning using Canal Surfaces

1: procedure ENCODING DEMONSTRATIONS

2: Input:set of n demonstrations ξ ∈ R3×N×n

3: Output:Canal surface Cs, all TNB frames F

4: m(s)← mean(ξ )
5: r(s)← boundary(ξ )
6: Cs,F ← makeCanalSurface(m(s),r(s))
7: procedure REPRODUCING TRAJECTORY

8: Input:initial point p0 ∈ R3, Cs, F

9: Output:New trajectory ρ ∈ R3×N

10: η ← ‖p0−c0‖
‖g0−c0‖

11: pi← p0 , ρ ← p0
12: for each frameFi do
13: pi+1← project(pi,η ,Fi+1,Fi)
14: ρ ← pi+1
15: i← i+1

Algorithm 2 Generating a canal surface (circular cross-section)

1: procedure makeCanalSurface
2: Input:directrix m(s) ∈ R3×N , radii r(s) ∈ R1×N

3: Output:Canal surface Cs, all TNB frames F

4: v← 0 : 2π

5: for each mi ∈m(s) and ri ∈ r(s) do
6: {ei

T ,ei
N ,ei

B}← estimateTNBframe(mi)
7: F ←{ei

T ,ei
N ,ei

B}
8: Cs←mi + ri

(
ei

N cos(v)+ ei
B sin(v)

)

emphasizing that the movement in that specific area has
to be constrained. Thus, the radii function represents both
the boundaries of the demonstrated task and the constraints
applied from surrounding objects and the environment.

For canal surfaces with circular cross-sections, the radius
at a given point on the directrix can be calculated by
measuring the distances from that point to the corresponding
points on the demonstrated trajectories and using the maxi-
mum value. The estimated circle bounds other corresponding
points as well (Fig. 4a). The calculated radii along the direc-
trix form the radii function r(s) (Line 5). We use (Line 6)
the estimated mean and the radii function in Algorithm 2 to
generate a canal surface with circular cross-section.

As mentioned previously, we can also use canal surfaces
with non-circular cross-sections in order to cover a smaller
yet more reasonable area while maintaining all the implicit
local constraints of the task more efficiently. For example,
to generate canal surfaces with elliptical cross-sections, (10)

Fig. 4: Cross-sections with different shapes estimated on the same
set of data. Blue dots represent the point on the directrix, and the
red dots are the corresponding points on the demonstrations.
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Fig. 5: Reproduction from a random initial pose pi on the ith
cross-section Si. Firstly the ratio of the initial point is calculated
as η = pici

gici
. Then the point is transferred to the next cross-section,

Si+1 and scaled by gi+1ci+1 such that pi+1 =η .gi+1ci+1.(TFi+1,Fi),
where T is the transformation matrix between two frames.

has to be modified to include the major and minor axes of
the ellipse according to (5) (see Fig. 4b). As a more general
form, B-splines (a generalized form of Bézier curves) provide
a powerful tool for fitting a smooth curve to a set of key-
points. Given the set of demonstrations, at each arc-length,
a closed B-spline can be fitted to the data representing the
cross-section of the canal surface at that point (Fig. 4c).

B. Skill Reproduction
During the reproduction phase, the initial position of the

end-effector p0 in the cross-sectional plane S0 (perpendicular
to the directrix at c0) is used as input. We measure the
ratio η (Line 10) by calculating the distance p0c0 and
the distance g0c0, where g0 is located at the boundary of
the corresponding cross-section (see Fig. 5). We use η to
generate the next pose of the end-effector by transforming
p0 from the current TNB frame F0 to the next (Line 13).
The pose on the second frame is then calculated as: p1 =
η(g1c1)(TF1,F0). Fig. 5 illustrates a single-step reproduction
process using the ratio rule. The ratio rule can generate new
trajectories from any point inside the canal. It also ensures
that the essential characteristics of the demonstrated skill are
applied to the reproduced time-independent trajectory.

V. EXPERIMENTS
To validate the capabilities and interpretability of the

proposed approach, we performed a set of experiments using
both noiseless simulated and real-world data. We also com-
pared our approach with two well-known LfD approaches
namely, DMPs and GMM/GMR.

A. Simulated demonstrations
In the first experiment, as shown in Fig. 6a, we manually

simulate four symmetric demonstrations. The demonstrations
imply that the movement can be started and ended in a wide
task-space; in the middle, however, it is constrained to pass
through a narrow area. This movement resembles threading
a needle or picking an object placed in the middle of the
movement. The obtained canal surface extracts and preserves
the important characteristics of the demonstrated task. Given
an arbitrary initial pose of the end-effector, our approach is
capable of reproducing the learned skill using the ratio rule
(Section IV-B). Although the directrix of the four symmetric
trajectories is a straight line, we can reproduce a variety
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(a) four demonstrations (b) three demonstrations

Fig. 6: Demonstrations (red), directrix (blue), canal surface (gray),
and reproductions (dotted black) for the simulated experiments.

of trajectories that satisfy the constraint of the task in the
middle. Using GMM/GMR in this case results in reproducing
a straight trajectory similar to the directrix.

In our second experiment, we removed one of the demon-
strations from the set and repeated the experiment. Although
a canal surface with a circular cross-section still generates
a valid encoding of the task, a more descriptive encoding
of the skill can be represented using an elliptical cross-
section. In fact, due to symmetry, a canal surface with an
elliptical cross-section for the previous set would be identical
to one with a circular cross-section. The result in Fig. 6b
indicates the adaptation of the canal surface to the new
situation while preserving the main characteristics of the
task. In this experiment, the adaptation of the model and
the reproduced trajectory after removing the demonstration
are fairly predictable. That is, it can be seen that the
canal surface and its directrix gravitate towards the area
with more information. Such features make canal surfaces a
promising tool for producing visually understandable models
employable even by non-expert users.

B. Real-world demonstrations

In this section we present results for three skills recorded
through kinesthetic teaching (see Fig. 3) using a 6DOF
Kinova Jaco2 robotic arm. The data is recorded at a sampling
rate of 30Hz. The captured demonstrations together with the
obtained canal surfaces are illustrated in Fig. 7.

The first experiment shows a reaching skill where the ob-
ject (green sphere) is placed on a table (Fig. 7a). The second
experiment (Fig. 7b) shows a picking skill that resembles the
simulated experiment in Section V-A. The third experiment
shows a circular movement around an object (blue sphere)
while avoiding collision (Fig. 7c). All the obtained canal
surfaces, which are formed with circular cross-sections,
represent the demonstrated skill continuously and enable the
robot to reproduce the movement from any initial pose. Fig. 8
shows the demonstrations, directrix, reproductions, and the
boundaries of the obtained canal surfaces plotted axis-wise
for each task. Since we used circular canal surfaces, for each
task the radii function at each step is estimated using the
maximum distance from the directrix.

Fig. 7: Demonstrations (red), directrix (blue), reproductions (ma-
genta), canal surface (gray) for three real-world experiments per-
formed using our approach.

Fig. 8: Demonstrations (gray), directrix (blue), reproductions
(black), and boundaries of the canal surface (red) for three real-
world experiments performed using our approach. Task-space tra-
jectories relative to base of the robot are plotted with respect to
number of points in each task.

C. Comparing with other approaches

In this section we compare our approach to two well-
known LfD approaches: DMPs [10] and GMM/GMR [6].
We employed these two algorithms to learn and generalize
the three tasks explained in Section V-B. Due to lack of
space, we only present results for the obstacle avoiding
experiment and highlight the differences among the three
approaches. The demonstrations and the obstacle, which is
unknown to the robot, are depicted in Fig. 9a. We encoded
the demonstrations using a canal surface with circular cross-
section and reproduced five reproductions from various initial
poses (Fig. 9b). As mentioned before, our approach requires
no parameter tuning and enables the robot to learn the
characteristics of the movement to avoid the obstacle. All
the reproductions are guaranteed to remain inside the canal.

In our first attempt, we trained DMPs with five attractors
and GMMs with five components. For DMPs several parame-
ters, such as proportional and damping gains, also have to be
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Fig. 9: From left to right, (a) five demonstrations and the obstacle,
(b) obtained canal surface and five reproductions, (c) DMP with
five attractors and five reproductions, and (d) GMM/GMR with five
components and reproduction (see Section V-C).

tuned. Using the obtained model, we reproduced five trajec-
tories using DMPs from the same initial poses. The results
show that the reproduced trajectories could not accurately
mimic the movement and avoid the obstacle (Fig. 9c). In
addition, all of the reproduced trajectories converge toward
the first attractor and exhibited a similar behavior afterwards.

Except for the number of components, GMM does not
require additional tuning, but we have to include timing
information to the dataset. As depicted in Fig. 9e since GMR
uses time as input in order to reproduce a trajectory, it cannot
generalize over the initial pose and all the reproductions
would be identical. Although the reproduced trajectory man-
ages to avoid the obstacle, the shape of the movement is
not circular. It has to be noted that the reproductions by
DMPs and GMR are similar to the directrix of the obtained
canal surface (which by itself can be used as a reproduction).
Whereas, the reproductions using the canal surface are not
identical, they only maintain the important characteristics of
the task while exploiting the whole space bounded by the
canal surface.

In our next attempt, we double the number of DMP attrac-
tors and Gaussian components. The results show that both
learned models are improved (Fig. 9d and 9f). This experi-
ment shows the vital and sensitive effect of parameter tuning
on both approaches especially on DMPs. Using GMM/GMR,
we had to include timing information in our dataset. Also,
with ten Gaussian components, the EM algorithm required
more iterations to converge that had to be tuned manually.

VI. DISCUSSION AND FUTURE WORK

We proposed a parameter-free approach that not only
simplifies the usage of the algorithm and makes the results

consistent, but also can make our approach move conve-
nient for non-expert users. Our approach preserves the main
characteristics of the movement (including its boundaries),
exploits the whole demonstrations space, and reproduces a
various range of trajectories that achieve the goal of the task.
Achieving similar results using other existing approaches
such as DMPs and GMM/GMR requires trail and error.

Moreover, the proposed approach can be adapted to the
corrections and constraints applied by a human teacher. Our
future work includes activating the robot in compliant control
mode and enabling the teacher to interact and refine the
robot’s movements during reproduction. The learned model
can be actively updated, and the new reproductions will
reflect the refinements.
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