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Abstract
We propose a novel learning approach based on
differential geometry to extract and encode impor-
tant characteristics of a set of trajectories captured
through demonstrations. The proposed approach
represents the trajectories using a surface in Eu-
clidean space. The surface, which is called Canal
Surface, is formed as the envelope of a family of
regular implicit surfaces (e.g. spheres) whose cen-
ters lie on a space curve. Canal surfaces extract
the essential aspects of the demonstrations and re-
trieve a generalized form of the trajectories while
maintaining the extracted constraints. Given an ini-
tial pose in task space, a new trajectory is repro-
duced by considering the relative ratio of the ini-
tial point with respect to the corresponding cross-
section of the obtained canal surface. Our approach
produces a continuous representation of the set of
demonstrated trajectories which is visually perceiv-
able and easily understandable even by non-expert
users. Preliminary experimental results using sim-
ulated and real-world data are presented.

1 Introduction
The main goal of Learning from Demonstration (LfD) ap-
proaches is to enable even non-experts to teach new skills to
robots interactively through demonstrations. LfD approaches
eliminate the need for manual programming of the desired
behavior to the robot and instead, they use a set of successful
examples of the behavior to learn a model. The robot then
should be able to learn and generalize the skill to novel sit-
uations autonomously. However, it has been shown that cur-
rent robotic platforms are not good at being autonomous and
need human assistance constantly1. Therefore, ignoring the
presence of the human teacher after the demonstration phase,
which is a common case, becomes one of the main drawbacks
of most LfD approaches. In fact, the existing representations
are so complicated that make it almost impossible for non-
experts to diagnose a failure or an undesirable behavior and
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1For instance, see results from the recent DARPA Robotic Chal-
lenge at http://www.theroboticschallenge.org/

find a way to resolve it. A possible solution, however, is to
employ an encoding process that is both powerful enough to
learn and generalize the task robustly and is also readily com-
prehensible for non-experts. Such learning approach should
take advantage of teacher’s feedback not only for providing
new demonstrations but also for updating and adjusting the
learned model in the loop.

In this paper, we propose a novel LfD approach based on
Differential Geometry that enables robots to acquire novel
trajectory-based skills through demonstrations. This ap-
proach, which builds on our previous work [Ahmadzadeh and
Chernova, 2016], encodes the demonstrated skill as a geo-
metric model. The model is composed of a regular curve
and a surface in three-dimensional Cartesian space called a
Canal Surface. The constructed canal surface represents the
main features of the skill and its constraints. Since the en-
coded skills using canal surfaces are visually perceivable and
easily understandable, they enable even non-expert users to
provide feedback to improve the quality of the learned skill.
Canal surfaces and their parametric formulation are described
in Section 3. The proposed learning approach is explained in
Section 4 and preliminary experimental results using artificial
and real data gathered from a Jaco2 robotic arm are presented
in Section 5. Then in Section 5.4, the proposed approach is
compared with the Gaussian Mixture Model [Calinon et al.,
2007]. Potential extension of the proposed approach and its
limitations are discussed in Section 6.

2 Related Work
During the two past decades, several trajectory-based LfD ap-
proaches have been developed to encode a demonstrated skill
and retrieve a generalized form of the trajectory [Argall et
al., 2009]. Many of them use regression-based techniques
to represent the given set of demonstrations using a proba-
bilistic representation [Vijayakumar et al., 2005; Grimes et
al., 2006]. One of the most well-known works in this cate-
gory is by Calinon et al., [2007], which builds a probabilis-
tic representation of the demonstrations using Gaussian Mix-
ture Model (GMM) and uses Gaussian Mixture Regression
(GMR) to retrieve a smooth trajectory. The encoded model
is learned through the Expectation-Maximization (EM) algo-
rithm. In GMM/GMR the learning and reproduction phases
are fast and can be used in an online manner, but the repro-
duce trajectory is time-dependent. similarly, Gaussian Pro-



cess (GP) Regression was proposed to generalize over a set
of demonstrated trajectories [Grimes et al., 2006]. Later local
Gaussian process regression was employed to extract the con-
straints of a demonstrated skill [Schneider and Ertel, 2010].
Another approach similar to Gaussian Process called LfD by
Averaging Trajectories (LAT), was introduced in [Reiner et
al., 2014]. LAT is based on the product of normal distribu-
tions estimated from trajectories relative to the objects ob-
served during the demonstrations. Each demonstration is
transformed with respect to the pose of the objects in the
scene. Both LAT and GP cannot extract constraints of the
demonstrated skills.

Ijspreet et al., showed that dynamical systems can also
be used to encode and reproduce trajectories [Ijspeert et al.,
2002; Ijspeert et al., 2013]. Dynamic Movement Primitives
(DMPs) represent the demonstrated trajectories as move-
ments of a particle subject to a set of damped linear spring
systems perturbed by an external force. The shape of the
movement is approximated using Gaussian basis functions
and the weights are calculated using locally weighted regres-
sion. However, the boundaries and the state-space formed by
the DMP representation are not visually perceivable.

In order to reflect a human’s intention more accurately,
Dong and Williams [2012] proposed a representation of con-
tinuous actions (i.e. trajectories) by extracting covariance
data which is called probabilistic flow tubes. They utilized
binary contact information among objects and state of the en-
vironment during the demonstrations in order to match all the
sequences temporally. The learned flow tube consists of a
spine trajectory and a set of covariance data at each corre-
sponding time-step. Their representation can be seen as a spe-
cial case of our approach in which the cross-section is formed
using the covariance data.

Another similar idea has been proposed in [Majumdar and
Tedrake, 2016] to address the problem of real-time motion
planning. Firstly, a finite library of open-loop trajectories
and their corresponding designed controllers are computed
off-line. This library approximates a boundary which can be
visualized as a funnel around the trajectory. A closed-loop
system, which is guaranteed to remain within the computed
funnel, is then used to generate trajectories in real-time that
can deal with obstacles in the environments. The computed
funnel illustrates a similar representation to the proposed ap-
proach in this paper. However, we do not use controllers and
off-line computation.

3 Canal Surface
Canal surfaces, which play a fundamental role in descrip-
tive geometry, were first introduced by Hilbert et al., [1952].
In the context of Computer Aided Graphic Design (CAGD),
canal surfaces are used for the construction of smooth blend-
ing surfaces, shape reconstruction, and transition surfaces be-
tween pipes [Farouki and Sverrisson, 1996; Hartmann, 2003].
They are also known as Generalized Cylinders [Shani and
Ballard, 1984] which can be explained as a representation
of an elongated object composed of a spine and a smoothly
varying cross-section. In robotics, canal surfaces have been
used for path planning [Shanmugavel et al., 2007]. In this

paper, we use canal surfaces to encode a set of trajectories
captured through demonstrations, extract their important fea-
tures, and retrieve a generalized form of the movement. This
section provides an overview of the mathematical formulation
of canal surfaces.

Envelope of a Pencil of implicit Surfaces
Let Φu be the one-parameter pencil2 of regular implicit sur-
faces3 with real-valued parameter u [Abbena et al., 2006].
Two surfaces corresponding to different values of u intersect
in a common curve. As u varies, the generated surface is the
envelope4 of the given pencil of surfaces. In 3D space, the
envelope can be defined using the following equations:

Φu : F (x, y, z, u) = 0, (1)
∂F

∂u
(x, y, z, u) = 0, (2)

where Φu involves implicit C2−surfaces which are at least
twice continuously differentiable.

Canal Surface
A canal surface, Cu, is defined as an envelope of the one-
parameter pencil of spheres and can be written as

Cu : f(x;u) := {(c(u), r(u)) ∈ R4|u ∈ R}, (3)
where the spheres are centered on a regular curve Γ : x =
c(u) ∈ R3 in Cartesian space. The radius of the spheres are
given by the function r(u) ∈ R, which is a C1-function. The
non-degeneracy condition is satisfied by assuming r > 0 and
|ṙ| < ‖ċ‖ [Hartmann, 2003]. In Differential Geometry, Γ
is known as the spine curve or directrix and r(u) is called
the radii function. For the one-parameter pencil of spheres,
Equation 3 can be written as

Cu : f(x;u) := (x− c(u))2 − r(u)2 = 0. (4)

Parametric Representation
To form a parametric representation of Equation 4, we use an
orthonormal frame called Frenet-Serret or TNB. This frame
is suitable for describing the kinematic properties of a particle
moving along a continuous, differentiable curve in R3. TNB
is composed of three unit vectors {eT , eN , eB}, where eT is
the unit tangent vector, and eN and eB are the unit normal
and unit binormal vectors respectively. For a non-degenerate
directrix curve Γ : x(s), parameterized by its arc-length pa-
rameter s, the TNB frame can be defined using the following
equations:

eT =
dx(s)

ds
, (5)

eN =
deT
ds

/‖deT
ds
‖, (6)

eB = eT × eN . (7)
2A pencil is a family of geometric objects sharing a common

property.
3An implicit surface is a surface in Euclidean space that can be

defined by an equation such as F (x(u), y(u), z(u)) = 0 [Abbena
et al., 2006]. For instance, a sphere is an implicit surface.

4A surface tangent to each member of a family of surfaces in 3D
space is called an envelop.



Figure 1: Four canal surfaces sharing the same directrix with different radii function. (a) a constant circular cross-section, (b) time-varying
circular cross-section, (c) constant elliptical cross-section, and (d) time-varying elliptical cross-section.

Applying the second condition of envelopes from Equa-
tion 3 to the formula of a canal surface defined by Equation 4
gives

∂Cs
∂s

= 2(x− c(s))eT − 2r(s)
dr

ds
= 0. (8)

For each value of s, Equation 8 represents a circle orthog-
onal to the unit tangent vector of the directrix. Thus the canal
surface can be represented as a set of circles
Cs : f(s, v) = c(s)+ (9)

r(s)

(
−eT

dr

ds
+

√
1− (

dr

ds
)2 (eB sin(v)− eN cos(v))

)
,

where v represents a parameter that varies from 0 to 2π along
the circle. Equation 9 denotes the parametric representation
of a canal surface with circular cross-section. In some cases,
the cross-section may vary in shape and size when the TNB
frame translates along the directrix. For instance, it can start
with a circular shape and then gradually vary to an ellipse.
In general, cross-sections can be represented using differ-
ent shapes and techniques such as polygons, polynomials,
parabolic blending, cone sections, and B-splines[Shani and
Ballard, 1984]. Such characteristics makes canal surfaces a
suitable candidate for modeling complicated constraints of
trajectory-based skills captured through demonstrations. Fig-
ure 1 illustrates a few examples of canal surfaces with circular
and elliptical cross-sections.

4 Skill Learning using Canal Surfaces
In this section, we explain how canal surfaces can be em-
ployed to encode, learn and reproduce new skills from
demonstrations. We assume that multiple examples of the
same skill are demonstrated. Although any demonstration
technique such as teleoperation, and shadowing can be em-
ployed, we use kinesthetic teaching. Our approach consists
of two phases: learning and reproduction. In the learning
phase, we build a canal surface by calculating the directrix
and the radii function from the given demonstrations. In the
reproduction phase, we devise a geometric method for gener-
ating new trajectories starting from arbitrary initial positions.
Note that Algorithm 1 shows a pseudo code of the proposed
approach in its simplest form.

4.1 Learning Phase

Consider n different demonstrations of a task are performed
and captured in task-space. For each demonstration the 3D
Cartesian position of the target (e.g. robot’s end-effector) is
recorded over time as ξ̂

j
= {ξj1, ξ

j
2, ξ

j
3} ∈ R3×T j

, where
j = 1 . . . n denotes the jth demonstration and T j is the num-
ber of data-points that can vary for each trajectory. In order
to gain a frame-by-frame correspondence mapping among the
recorded demonstrations and align them temporally, for each
demonstration firstly a set of piecewise polynomials is ob-
tained using cubic spline interpolation. Then a set of tem-
porally aligned trajectories is generated by resampling from
the obtained polynomials. Another advantage of this tech-
nique is that when the velocity and acceleration data are un-
available, the smoothed first and second derivatives of the ob-
tained piecewise polynomials can be used instead. This pro-
cess provides us with the set of n resampled demonstrations
ξ ∈ R3×N×n each of which consists of N data-points. An
alternative widely used solution is employing the Dynamic
Time Warping method.

Algorithm 1 Skill Learning using Canal Surfaces

1: procedure ENCODING DEMONSTRATIONS
2: Input:set of demonstrations ξ ∈ R3×N×n

3: Output:Canal surface Cs, all TNB frames F
4: m(s)← mean(ξ)
5: r(s)← boundary(ξ)
6: Cs,F ← makeCanalSurface(m(s), r(s))

7: procedure REPRODUCING TRAJECTORY
8: Input:initial point p0 ∈ R3

9: Output:New trajectory ρ ∈ R3×N

10: η ← ‖p0−c0‖
‖g0−c0‖

11: pi ← p0 , ρ← p0

12: for each frameFi do
13: pi+1 ← project(pi, η,Fi+1,Fi)
14: ρ← pi+1

15: i← i+ 1



Algorithm 2 Generating a canal surface with circular cross-
section

1: procedure MAKECANALSURFACE
2: Input:directrix m(s) ∈ R3×N , radii r(s) ∈ R1×N

3: Output:Canal surface Cs, all TNB frames F
4: v ← 0 : 2π
5: for each mi ∈m(s) and ri ∈ r(s) do
6: {eiT , eiN , eiB} ← estimateTNBframe(mi)
7: F ← {eiT , eiN , eiB}
8: Cs ←mi + ri

(
eiN cos(2πv) + eiB sin(2πv)

)
Estimating the Directrix
In order to estimate the backbone curve or the directrix, we
can simply calculate the directional mean value for the given
set of demonstrations. Let m ∈ R3×N be the arithmetic mean
of ξ. Note that m is the space curve that all the spheres are
centered on to form a canal surface. Line 4 in Algorithm 1
calculates the directrix. Alternatively, the directrix can be
produced using GMR [Calinon et al., 2007]. In that case,
GMR generates the directrix by sampling from the learned
statistical model using GMM.

Estimating the Radii
In this step, we explain methods for calculating the cross-
section of the canal surface at each time step. The circum-
ference of a cross-section represents the implicit local con-
straints of the task imposed by the set of demonstrations. For
instance, when all the trajectories pass through a very nar-
row area, the tutor is emphasizing that the movement in that
specific area has to be constrained. Thus, the radii function
represents both the boundaries of the demonstrated task and
the constraints applied from surrounding objects and the en-
vironment.

In its simplest form, the radii function of a canal surface
with a circular cross-section can be calculated by measur-
ing the distance from each point on the directrix to the cor-
responding points on the demonstrated trajectories. If these
points are assumed as vertices of a polygon, a circumscribed
circle can be found that passes through all the vertices. An-
other method that we employ in our experiments is to use
the vertex with a maximum distance from the center to make
a circle that bounds other points as well. Figure 2 depicts
the estimated boundaries for a real-world experiment. Line 5
in Algorithm 1 calculates the boundaries and forms the radii
function which is later used to form the canal surface (Line 6).
Algorithm 2 shows a procedure for generating a canal surface
with a circular cross-section.

Note that to generate canal surfaces with elliptical cross-
sections, Equation 9 has to be modified to include the major
and minor axes of the ellipse. The advantage of such modi-
fication is that the obtained cross-section can cover a smaller
yet more reasonable area while maintaining all the implicit
local constraints of the task more efficiently. Some examples
can be seen in Figure 1 where four canal surfaces with iden-
tical directrix and different radii functions are illustrated.

In a more general form, as mentioned before, cross-
sections can be represented by different shapes and tech-
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Figure 2: Extracted constraints of the task used for calculating the
radii function. The demonstrations are shown in black and the ex-
tracted boundaries are shown in red.

niques. Among others, B-splines, which are a generalized
form of Bézier curves, provide a powerful tool for fitting a
smooth curve to a set of key-points. Given the set of demon-
strations, at each arc-length, a closed B-spline can be fitted
to the data representing the cross-section of the canal surface
at that point. A set of B-spline cross-sections are depicted in
Figure 3 where two, three, four, and more demonstrations are
given.

-2 0 2

-2

0

2

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

Figure 3: Cross-section generated using closed B-splines with two,
three, four, and more demonstrations. Small dots (blue) represent
the points sampled from the demonstrations and the big (blue) dot
shows the corresponding point on the directrix.

4.2 Reproduction Phase
During the reproduction phase, the initial position of the
end-effector p0 in the cross-sectional plane S0 (perpendic-
ular to the directrix at c0) is used as input. We measure
the ratio η (Line 10) by calculating the distance between p0
and c0 (p0c0) and the distance between c0 and g0 placed at
the boundary of the corresponding cross-section (g0c0). We
use the measured ratio to generate the next pose of the end-
effector by transforming it from the current TNB frame to the
next (Line 13). An illustration of a single-step reproduction
process using the ratio rule can be seen in Figure 4. The ratio
rule ensures that the essential characteristics of the demon-
strated skill are applied to the reproduced time-independent
trajectory.
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Si+1 and scaled by gi+1ci+1 such that pi+1 = η.gi+1ci+1.(Tpi),
where T is the transformation matrix between two frames.

Dealing with Noise
Calculating Frenet-Serret frames for real data is prone to
noise. The reason is that at some points the derivative vec-
tor deT

ds vanishes and the formulae cannot be applied anymore
(i.e. eN cannot be calculated). Under such circumstance, a
possible solution is to produce the unit normal vector eN as
the cross product of a random vector by the unit tangent vec-
tor eT .

5 Experiments
To validate the capabilities and interpretability of the pro-
posed approach, we performed a set of experiments using
both artificially made and real demonstrations. The simu-
lated experiments show the capabilities of the proposed ap-
proach using noiseless data while the real-world experiment
shows its feasibility. The real demonstrations were collected
through kinesthetic teaching using a 6DOF Jaco2 robotic arm
from Kinova. The data is recorded at a sampling rate of 30Hz.

5.1 Task I
Consider four simulated demonstrations as illustrated in Fig-
ure 5. The demonstrations imply that the motion can begin
and end in a wide task-space but it is constrained in the middle
and has to pass through a very narrow area. The obtained di-
rectrix and the canal surface with a circular cross-section are
estimated using Algorithm 1 and are shown in Figure 5. Al-
though the directrix of the four identical trajectories becomes
a straight line, the canal surface extracts and preserves the
important features and constraints of the demonstrated task.
Given a new initial pose of the end-effector, the reproduced
trajectory using the ratio rule (explained in Section 4.2) starts
and finishes inside the canal surface while satisfying the con-
straint of the task in the middle.

5.2 Task II
In this task, one of the demonstrations from the previous set
is removed and the experiment is repeated. The result is de-
picted in Figure 6. Although the canal surface calculated
in the previous experiment is still valid for this set as well,
a better description of the skill can be represented using a
canal surface with an elliptical cross-section. The reproduced

Figure 5: Four demonstrations (solid black), directrix (blue) and
the encoded canal surface (gray) for task I. The projection of the
surface on the X − Y plane shows the boundaries of the obtained
canal surface. Reproduction of the motion (dotted black) from a
random initial pose (red marker) is depicted.

trajectory generated using the ratio rule (explained in Sec-
tion 4.2) is also illustrated in Figure 6. This experiment in-
dicates that after removing a demonstration from the set, the
canal surface adapts to the new situation while maintaining
the constraints of the task. And also, the adaptation of the
model and the reproduced trajectory are fairly predictable.
Such features make canal surfaces a promising approach for
producing visually understandable models employable even
by non-expert users.

Figure 6: One of the demonstrations is removed from the previ-
ous set and the canal surface is re-generated with an elliptical cross-
section (task II). The directrix (blue) is inclined towards the demon-
stration on top. Reproduction of the motion (dotted black) from a
random initial pose (red marker) is depicted.

5.3 Task III
In this experiments, we collected five demonstrations in task-
space using the Jaco2 robotic arm through kinesthetic teach-
ing. Figure 2 shows the captured demonstrations and the ex-
tracted constraints of the task. The obtained canal surface us-
ing Algorithm 1 with an elliptical cross-section is illustrated
in Figure 7. The reproduced time-independent trajectory is



generated using the ratio rule as explained in Section 4.2.
This experiment shows the feasibility of the proposed ap-
proach in real-world experiments.

Figure 7: Captured demonstrations (solid black lines) using the
Jaco2 robotic arm and the corresponding encoded canal surface. The
directrix is shown in blue and the reproduction of the motion from a
random initial pose is plotted with dotted black line.

5.4 Comparing with GMM/GMR
We applied GMM/GMR approach as presented in [Calinon et
al., 2007] to the set of real demonstrations from Section 5.3.
As shown in Figure 8a, a statistical model is trained using
GMM with 4 Gaussian components, and a generalized ver-
sion of the dataset with associated constraints is retrieved
through GMR. We found that 4 Gaussian components effi-
ciently encode the skill. As it can be seen in Figure 8b, com-
paring the outcome of GMM/GMR with the results from Sec-
tion 5.3 reveals that the reproduced trajectory by GMM/GMR
is similar to the directrix of the modeled canal surface. The
obtained representation by using our approach is visually
descriptive and easily understandable even for non-experts.
This feature enables end-users to evaluate the given set of
demonstrations and improve the learned model by providing
proper feedback (e.g. verbal, physical). Another advantage
is that our approach reproduces time-independent trajecto-
ries from any random initial pose inside the canal. However,
GMR reproduces time-based trajectories and requires an ad-
ditional component to generate trajectories from an arbitrary
initial pose. Several reproduced trajectories by our approach
from various initial poses are depicted in figure 9.

6 Discussion and Future Work
One of the advantages of employing geometrical approaches
such as canal surfaces is that the obtained representation is
visually descriptive and easily understandable even for non-
expert users. This feature enables end-users to evaluate the
given set of demonstrations and improve the learned model
by providing proper feedback (e.g. verbal, physical). Un-
like many existing LfD approaches in which the human op-
erator is only at the beginning of the process, our approach
is capable of keeping the user in the loop. For instance, if
by observing the obtained model the end-user realizes that
the canal needs to be more constrained at some specific area,
the model can be updated by removing some of the trajecto-
ries and adding new ones. Making such decisions to adjust
the model would be very complicated for non-experts while
dealing with representations such as DMPs and GPs.
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Figure 8: Comparing the proposed approach with GMM/GMR.
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Figure 9: Demonstrations (black), directrix (blue), GMR repro-
duction (orange), and multiple reproductions from arbitrary initial
points (yellow) using our approach, for task III.

Another merit of our approach is that unlike many existing
approaches the reproduced trajectories are time-independent.
This feature enables our approach to reproduce trajectories
reactively from any point inside the canal surface.

The proposed approach can be adapted to the adjustments
and constraints applied even during the reproduction phase.
Our future work includes activating the robot in compliant
control mode to enable the user to interact and refine the
robot’s movements during reproduction. The learned model
can be actively updated based on the physical corrections
from the user. The new reproduced trajectories based on the
updated model will reflect the given feedback in the form of
new constraints on the surface.

Furthermore, although the proposed approach is capable
of encoding and reproducing trajectories on its own, it can be
combined with other methods such as DMPs and keyframe-
based LfD [Akgun et al., 2012]. Integration with DMPs
can provide us with a different reproduction method while
keyframe-based LfD enables the system to take advantage of
smoother trajectories while retaining their important charac-
teristics.
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