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Abstract—Hyper-redundant manipulators having degrees 
of freedom much more than required, have many 

advantages and important capabilities. In this paper, 

modeling of the manipulator dynamics is done using a 

special curve called 'backbone' curve, modal method, 

Lagrangian mechanics and geometric transformation 

between variables space of backbone curve and manipulator 

joints. The dependency of the nonlinear and coupled terms 

of the dynamics model to joint variables makes some 

difficulties in classical methods to controller design. To 

overcome this problem, fuzzy controllers that have 

appropriate efficiency in complex and nonlinear systems are 

used. For demonstrating this matter, dynamics modeling of 
10 degrees of freedom manipulator is done. Then a fuzzy 

controller is designed with attention to the dynamics 

behavior of the system. Manipulator behavior through 

various and noisy inputs are evaluated by simulation of the 

model including fuzzy controller. The results show very 

small error in manipulator motions and suitable condition 

of the designed fuzzy controller based on the dynamics 

model.  

1. INTRODUCTION

Hyper-redundant manipulators have a large or infinite 

degree of kinematics redundancy. They are analogous in 

morphology to snake, tentacles, and elephant trunks. Their 

high degree of articulation makes them work well suited in 

highly constrained environments, such as nuclear reactor 

cores, underground toxic waste tanks, or the human 

intestine.

Hyper-redundant manipulators can be implemented in a 

variety of physical morphologies. The possible 

morphologies can be roughly categorized into three main 

types (see figure 1). In figure 1.a, a continuous morphology 

is shown. Figure 1.b shows a variable geometry truss 

structure or VGT. Figure 1.c shows a discrete morphology 

i.e. one with a large, but finite, number of rigid links. 

References [1], [2], [3] and [4] should be consulted for 

details of different morphologies. 
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This paper is focused on inextensible planar hyper-

redundant manipulators with discrete morphologies. It must

be noticed that manipulators with fixed length are referred 

to as inextensible, whereas those which can change length 

are called extensible.

To resolve the kinematic redundancy problem of hyper-

redundant manipulators, different schemes were introduced,

i.e., Pseudo inverse [6], generalized inverse [7], and 

extended inverse [8], of the manipulator Jacobian matrix.

These schemes, however, are difficult to implement in the 

real time control when including the dynamic effect of the 

arm into consideration because of their computational 

inefficiency in manipulation of matrices and nonlinear 

terms. In this paper we use curvilinear or backbone curve 

theory [9], [10], [11].In this theory, it is assumed that 

regardless of mechanical implementation the important 

macroscopic features of a hyper-redundant manipulator can 

be captured by a backbone curve.

The dynamics of hyper-redundant manipulators was first 

formulated macroscopically by Chirikjian [12]. He used the 

principles of continuum mechanics to approximately 

represent the dynamics of hyper-redundant manipulators, 

where the dynamics of the continuum mechanics is first 

formulated and then projected onto the actual physical 

structure. This modeling technique, however, is only an 

approximation. S.Ma, Watanabe and Condo, formulated the 

dynamics of hyper-redundant manipulators accurately in a 

parameterized form and proposed a control dynamic scheme 

for hyper-redundant manipulators where the manipulator 

dynamics is included into consideration [13]. In this paper 

we use Lagrangian mechanics to derive the dynamics

equations of hyper-redundant manipulators. The 

dependency of the nonlinear and coupled terms of the 

dynamics model to joint variables make some difficulties in 

classical methods to controller design [5], [19], [20]. To 

overcome this problem, fuzzy controllers that have 

appropriate efficiency in complex and nonlinear systems are 

used. 

Figure 1 - different morphologies
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The paper is organized as follow: section 2 reviews the 

kinematics problem of hyper-redundant manipulators. 

Section 3 represents the dynamics modeling of hyper-

redundant manipulators. Section 4 denotes the fuzzy 

controller design for the system. The computer simulation is

performed and its results are given in section 5. Section 6

gives conclusion of the paper.

2. KINEMATICS OF HYPER-REDUNDANT

MANIPULATORS

As it was stated before, different schemes, that were 

introduced traditionally, are difficult to implement in the 

real time control when including the dynamics effect of the 

manipulator into consideration. In this section we explain 

Backbone curve approach for inverse kinematics problem of 

hyper-redundant manipulators. Backbone curve theory was 

used to represent the posture of kinematically hyper-

redundant manipulators with an assumption that a hyper-

redundant manipulator can be captured by a continuous 

curve regardless of mechanical implementation [9]. 

 

This paper is focused on a planar inextensible hyper-

redundant manipulator with discrete morphology which

works in a workspace containing gravity effects (figure 1.c).

In this case, as shown in figure 2, for i-th link of the hyper-

redundant manipulator, let im be the mass, il  be the length 

and iJ  be the inertia, also for i-th joint let iθ  be the joint 

angle, iθ&  be the angular velocity, iθ&&  be the angular 

acceleration and iτ  be the actuated momentum into the 

joint.

To resolve the kinematics problem of hyper-redundant 

manipulators using backbone curve theory, the arm posture 

of the hyper-redundant manipulator must be modeled by a 

continuous curve that called backbone curve. So the 

backbone curve that is shown in figure 3, can be defined as: 

Definition: A backbone curve is a piecewise continuous 

curve that captures the important macroscopic geometry 

features of a hyper-redundant manipulator (Figure 3).

The angle ),( tsα  as shown in figure 3, represents the 

inclination angle of the vector with respect to x -axis on the 

curvilinear length. Where s  is the distance along the curve 

measured from the base and t  is time.

)),(),,(( tlytlx  shows the coordinate of the end-effector. It 

must be understandable that the position of each point on 

the manipulator is time variable. In this manner, ),( tsκ  is 

the curvature function of the backbone curve and can be 

defined as:
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Where 
1

a  and 
2

a  are the modal participation factors, [9] 

and l  is the curve length which is equal to the length of the 

manipulator that is to be configured. The end-effector 

position can be derived through integration with respect to 

the curve length, and given by:
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Where 
0

α  is the initial inclination angle of the vector with 

respect to x -axis at the start point or the arm base. The end-

effector position elements ),(),,( tlytlx  are derived by 

solving the equation (2), and given by (3) and (4).
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Where 
0

J  is the zero order Bessel function. While the end 

position of the curve is given, its form given by the 

curvature ),( tsκ  corresponding to the given initial 

inclination angle 
0

α  can be defined by the coefficient 
1

a

and 
2

a . These coefficients are derived by solving the 

equations (3) and (4) and given by (5) and (6).
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Figure 3 - Backbone curve
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Figure 2 - details of i-th link 
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Where 1

0

−J  is the restricted inverse zero order Bessel 

function [13], [20]. The inverse solution of the curve is thus, 

derived and defined by the coefficients 1a and 2a . Of 

course if we change the initial inclination angle 
0

α  the form 

of the curve would be changed too as shown in equation (2). 

Thus the form of the serpenoid curve is determined by three 

parameters 1a , 2a and
0

α [13]. It should be noted here that, 

this technique highly restricts the working area and the 

flexibility of hyper-redundant manipulator by constraining 

the manipulator arm onto the serpenoid curve. 

3. DYNAMICS OF HYPER-REDUNDANT 

MANIPULATORS

In section 2, we used the backbone theory to solve forward 

and inverse kinematics problem of hyper-redundant 

manipulators. In this section, we first formulate the 

dynamics of hyper-redundant manipulators and then model 

the system dynamics. 

As it denoted later, the arm posture of the hyper-redundant 

manipulator can be configured by restricting the arm on the 

defined serpenoid curve. In this case, the joint angles of the 

manipulator are derived from the grade of the tangent line, 

and can be expressed as:
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Where ni ,,3,2 K= that n  is number of links of the 

manipulator and L  is the length of the link, equal to nl . 

Rewriting equation (7) in vector form, we have:
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In equation (8), 3~ ×ℜ∈ nJ λ  is The Jacobian matrix, with 

elements given by ji ajiJ = θλ ),(  . In this case the 

elements of the Jacobian matrix are given by:
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Differentiating equation (8) with respect to the time, we 

have:

aJ &r&r

λθ
~

= (10)

As it shows, all of the elements of the Jacobian matrix are 

constant and time independent. So its time derivative 

3~ ×ℜ∈ nJ λ
&

 is thus the zero matrix. And the joint 

accelerations are become into:

aJ &&r&&r

λθ
~

= (11)

It should be noted that this scheme makes the real time 

position control of hyper-redundant manipulators possible. 

Same as joint angles, velocities and accelerations, the joint 

torques can also be represented in the parameterized form. 

The manipulator dynamics problem is generally formulated 

using techniques from Lagrangian mechanics or iterative 

Newton-Euler formulations. Lagrangian mechanics results 

in equations of motion of the form:
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Where nnM ×ℜ∈
~

 is the inertia matrix, nnC ×ℜ∈
~

 is the 

torque matrix of Coriolis and centrifugal forces, 1×ℜ∈ nG
r

 is 

the torque vector of gravity force and 1×ℜ∈ nτ
r

 is the torque 

vector actuated into joints, respectively. We can use 

equation (12) for any inextensible hyper-redundant 

manipulator with discrete morphology.

For a manipulator with n  links, the equations of motion are 

nn×  matrices, however, using modal approach the 

equations of motion would be reduced to assumed mode 

numbers (two harmonic modes, here). Now with applying 

equations (9), (10), (11), into equation (12), we have:
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The dynamics equations of the hyper-redundant manipulator 

are derived in the joint variables space and transformed to 

the backbone curve variables space. Multiplying equation 

(13) by TJ λ
~

 we have:
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Rewriting equation (14) in short form, we have:
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respectively. The deformed inertia matrix can be written as:
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Where ∗
0

~
M  contains diagonal elements of the main inertia 

matrix, which these elements are constant values and  ∗
1

~
M

contains all non-diagonal elements. Substituting equation 

(16) for equation (15), we have:
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Rewriting equation (17) in form of a control law, we have:
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In this section, we deformed the dynamics equations of 

hyper-redundant manipulators to organize a suitable control 

law. Finally, using equation (18), the model of the system 

dynamics, as shown in figure 4, can be configured.
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4. FUZZY CONTROL

In previous section, we formulated and modeled the 

dynamics of hyper-redundant manipulators using 

Lagrangian mechanics and modal approach including two 

harmonic modes. In this section we introduce a fuzzy 

controller for the hyper-redundant manipulator to track a 

desired path.

Basically, a fuzzy system consists of three main parts: the 

fuzzifire, the fuzzy inference engine and the defuzzifire. The 

fuzzifire maps a crisp input into some fuzzy sets. The fuzzy 

inference engine uses fuzzy IF-THEN rules from a rule base 

to reason for the fuzzy output. The output in fuzzy terms is 

converted back to crisp value by the defuzzifire. In this 

paper, we used Sugeno fuzzy rules [18] to synthesize out 

fuzzy logic controller, which adopts the following general 

fuzzy IF-THEN rule:

cbYaXZ

isOutputthenYisInputandXisInputIF

++=

21
(19)

We use the Sugeno inference method to design the fuzzy 

controller, because it is a universal approximation [15]. The 

difference between Sugeno and Mamdani methods is the 

shape of output functions, however the output functions for 

Sugeno method, are linear or constant. For a zero order 

Sugeno model, the output is a constant value (a=b=0). 

In this paper we consider that the Sugeno inference, consists 

of product inference engine [15-18], singleton fuzzifire [15-

18], and center average defuzzifire [15-18].

To design the fuzzy logic controller for the modeled system, 

we first, define the input variables:
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These four state variables are used to design the fuzzy 

controller and the outputs of the fuzzy controller are the 

joint torque values. Then we define a suitable range for each 

input and a constant value for each output with attention to 

the dynamics behavior of the system.

According to the dynamics behaviors of the system, we 

define a suitable range for each input and a constant value 

for each output. Now we must define membership functions. 

The used membership function can be one of Gaussian, 

triangular, or any other type of membership functions [17], 

[18]. In this paper, we use Bell membership function and 

assume its parameters are fixed during the process. Figure 5, 

shows a generalized Bell membership function.

Figure 5 - Generalized Bell membership function

In the next step, we must organize a fuzzy rule base for the 

fuzzy controller. Totally, let iw  be output value of each step 

and iz  be the weight of each rule, it can be shown that: 
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The final control system of the hyper-redundant manipulator 

can be shown in figure 6. It must be noted that any signal 

line contains a vector signal.

5. COMPUTER SIMULATION

We assume a 10-DOF (degree of freedom) hyper-redundant 

manipulator to evaluate the validity of the proposed method. 

The length of each link of the arm is 0.1 [m], the mass of 

each link is set as m=0.1 [kg] and inertia parameter is 

derived by seeing the link as a uniform beam. It should be 

noted here that the modal approach method is applied using 

two harmonic modes. The simulated dynamics model of the 

hyper-redundant manipulator is shown in figure 7. 

Figure 7 - Simulated dynamics model of the manipulator

Figure 6 - Block diagram of control system
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To design a fuzzy controller for this model as described in 

section 4, first we assume four state variables and define 

suitable range for each one with attention to dynamics 

behavior of the system.
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 Then we define constant values for the controller outputs.
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 In this case we use two Bell membership function in each 

defined range (one in negative and other in positive region)

of input variables.

Figure 8 - Control System

To organize a fuzzy rule base for the fuzzy controller of the 

system, according to the equation (19), 16 distinct "IF-

THEN" rules are defined and given in table 1: 

 

Table 1 - IF-THEN Rules

The obtained fuzzy rule base is complete, continuous and 

consistent [18]. In this manner, the fuzzy inference engine is 

produced according to the equation (21). Then the resulted 

control system with four inputs and two outputs is placed in 
the fuzzy logic controller block of the simulated system, as 

shown in figure 8. Thereafter the simulated system is 

evaluated through various and noisy inputs. Totally, results 

show suitable condition of the designed fuzzy controller. 

Figure 9 shows number of obtained results. To make it clear 

we define a desired path in Cartesian space given by:

2.0)5sin(4.0 += xy (25)

Where 4.008.0 ≤≤ x  . The goal of this experiment is to 

analyze the manipulator tracking ability and measure 

tracking error values as shown in figures 10 and 11. It must 

be noted that, paths consist of straight lines can be tracked 

exactly by the manipulator.

6. CONCLUSION

In this paper, we used backbone curve theory, modal 

method and Lagrangian mechanics to modeling of the 

manipulator dynamics. This technique is possible to 

implement to real-time control. For the hyper-redundant 

manipulators which are high order multivariable nonlinear 

systems and have coupled states, the fuzzy controllers 
indicate some advantages when compared to the other 

classical controllers. In computer simulation section, 

dynamics modeling of 10 DOF manipulator was done. Then 

a fuzzy controller was designed with attention to the 

dynamics behavior of the system. Thereafter the simulated 

system was evaluated through various and noisy inputs. 

Totally, results showed suitable condition and good 

performance of the designed fuzzy controller which made 

the hyper-redundant manipulator track the desired path 

accurately.
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Figure 9 - Control System Response to different inputs
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