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Abstract—This paper presents a novel geometric ap-
proach for learning and reproducing trajectory-based
skills from human demonstrations. Our approach mod-
els a skill as a Generalized Cylinder, a geometric repre-
sentation composed of an arbitrary space curve called
spine and a smoothly varying cross-section. While this
model has been utilized to solve other robotics prob-
lems, this is the first application of Generalized Cylin-
ders to manipulation. The strengths of our approach are
the model’s ability to identify and extract the implicit
characteristics of the demonstrated skill, support for
reproduction of multiple trajectories that maintain
those characteristics, generalization to new situations
through nonrigid registration, and interactive human
refinement of the resulting model through kinesthetic
teaching. We validate our approach through several
real-world experiments with a Jaco 6-DOF robotic arm.

I. Introduction

Learning from Demonstration (LfD) provides the ability
to interactively teach robots new skills, eliminating the
need for manual programming of the desired behavior [4].
By observing a set of human-provided demonstrations,
LfD approaches learn a model and generalize the encoded
skill to novel situations autonomously. These capabilities
make LfD a powerful approach that has the potential
to enable even non-experts to teach new skills to robots
with little effort. However, despite the existence of several
trajectory-based LfD approaches, the vast majority of the
existing robotic platforms rely on motion-level actions that
are either hand-coded or teleoperated by experts [30],
highlighting the need for further advances in this area.

Existing trajectory learning representations are limited
by a number of challenges. First, the number of parameters
and the need to tune them for different types of trajectories
present a challenge to many users, especially non-experts.
Second, most available approaches require near-optimal
demonstrations in order to perform effectively, while the
redundancy and complexity of the current robotic plat-
forms (i.e. high degrees of freedom) demand a significant
level of expertise to perform near-optimal demonstra-
tions. Third, because of the assumption on near-optimal
trajectories, few techniques support robust methods of
refinement of the resulting model, assuming instead that
the input demonstrations should be treated as the only
input to the system. Finally, many existing techniques fail

Fig. 1: Robot reproducing two trajectory-based skills encoded
and learned using the proposed approach.

to generalize over start/end states, limiting the technique’s
ability to generalize to new situations.

In this paper, we present a novel LfD approach that ad-
dresses the above challenges through the use of a geometric
representation composed of a regular curve and a surface
in 3D Cartesian space. The presented approach requires
minimal parameter tuning and can reproduce a variety of
successful movements inside the boundaries of the encoded
model by exploiting the whole demonstration space. To
tackle the problem of generalization over terminal states,
we use a nonrigid registration method to transfer the
encoded model accordingly. This generalization approach
preserves the main characteristics of the demonstrated
skill while achieving the goal of the task. To overcome the
issue of sub-optimal demonstrations, our approach enables
the user to improve the learned model through physical
motion refinement. Unlike other existing techniques, re-
finements can be applied to both the demonstrations and
reproductions of the skill. Consequently, the user can start
from a set of (sub-optimal) demonstrations and refine the
learned model interactively to reach the desired behavior.
In addition to capturing the demonstrated trajectories,
the constructed model extracts and represents the main
characteristics of the demonstrated skill, which are the
spatial correlations across different demonstrations. These
underlying characteristics are extracted from the raw data
and are not specified by the user explicitly, thereby min-
imizing the effort of the user. Additionally, the proposed
representation is visually perceivable and can reproduce
the learned skill as a trajectory using a simple geometric
rule. We validate our approach in seven experiments using
a physical 6-DOF robot, as well as demonstrate its use
in comparison to Dynamic Movement Primitives [16] and
Gaussian Mixture Models [9].



II. Related Work

Existing trajectory-based LfD approaches use a variety
of techniques to encode demonstrations and retrieve a gen-
eralized form of the skill [4]. One category of approaches
uses regression-based techniques to generate a probabilis-
tic representation of the given demonstrations [29],[11].
Grimes et. al., employed Gaussian Process (GP) regression
to learn and generalize over a set of demonstrated trajecto-
ries [11]. In follow-on work, to overcome the computational
cost of GP, Schneider and Ertel used local Gaussian pro-
cess regression [24]. Another approach similar to GP called
LfD by Averaging Trajectories (LAT), used only one-
dimensional normal distributions [23]. Both GP and LAT
cannot extract constraints from the demonstrations with
objects aligned parallel to a Cartesian coordinate axis, and
none of the above approaches can deal with generalizing
the learned skill to new situations (e.g. terminal states).

Work by Calinon et. al., built a probabilistic representa-
tion of the skill using a Gaussian Mixture Model (GMM)
and retrieved a smooth trajectory using Gaussian Mixture
Regression(GMR) [9]. To add generalization, GMM/GMR
was later extended to task-parameterized GMM [8]. The
resulting method is more robust in its execution but re-
quires extensive parameter tuning for each trajectory (e.g.
number of Gaussian components, scale, weight, kernel).

An alternate approach is to use dynamic systems to en-
code/reproduce trajectories [16, 13]. Dynamic Movement
Primitives (DMPs) represent demonstrations as move-
ments of a particle subject to a set of damped linear spring
systems perturbed by an external force [16]. The shape of
the movement is approximated using Gaussian basis func-
tions and the weights are calculated using locally weighted
regression. DMPs are implicitly time-dependent and this
makes the system sensitive to temporal perturbations.

Generalization to new situations is another necessary
feature for an LfD approach. DMPs can generalize by
attaching an attractor to a new terminal point. However,
the implicit definition of time as a canonical system makes
the changes in the output (i.e. the speed of the movement)
very small as time increases [15]. Our work overcomes
this challenge through the use of nonrigid registration [7].
Finally, to maintain the shape of the movement during
generalization, DMPs require significant tuning of continu-
ous parameters, including those of the dynamical systems,
such as time constants and scaling factors [15].

Several other techniques utilize models with characteris-
tics similar to generalized cylinders. The real-time motion
planning approach proposed by Majumdar and Tedrake
approximates a boundary around a trajectory, which is
visualized as a funnel [20]. The generated funnels illustrate
a similar representation to our approach, however, we
do not require extensive off-line computation. Dong and
Williams proposed probabilistic flow tubes to represent
trajectories by extracting covariance data [10]. The learned
flow tube consists of a spine trajectory and 2D covariance
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Fig. 2: Three generalized cylinders with identical directrix and
different cross-section types. (a) is a canal surface.

data at each corresponding time-step. Although the ap-
proach was applied to extract a human’s intention, the
flow tube representation can be seen as a special case of
our approach in which the cross-sections are formed using
covariance data.

Finally, regardless of the technique used for learn-
ing from demonstration, the capability of improving the
learned model by refining its shape or spatial constraints,
through an interface or kinesthetic teaching, is highly
desirable. There exist few approaches that enable the
human to refine the initially given demonstrations. Argall
et. al., used tactile feedback for refining a given set of
demonstrations and reusing the modified demonstrations
to reproduce the skill through incremental learning [5].
They apply this approach to teaching a robot to position
its hand for grasping of different objects. Lee and Ott
proposed an incremental learning approach for iterative
motion refinement. Their approach combines kinesthetic
teaching with impedance control and represents the skill
using a Hidden Markov Model (HMM) [18]. Our proposed
approach goes beyond prior work by enabling the user
to refine the skill interactively both during and after the
learning process.

III. Background

A Generalized Cylinder (GC) represents an elongated
object composed of an arbitrary space curve called a
directrix (spine) and a smoothly varying cross-section [26].
In other words, by moving a cross-sectional curve, defined
on a plane, along the directrix while keeping the plane
perpendicular to the directrix at each point, the swept
volume represents a generalized cylinder. The shape and
size of the cross-sectional curve can vary smoothly from
point to point. Fig. 2 illustrates three GCs with an identi-
cal directrix and different cross-section types. Generalized
cylinders play a fundamental role in Differential Geometry,
and in the context of Computer Aided Graphic Design,
they are used for the construction of smooth blending
surfaces, shape reconstruction and transition surfaces be-
tween pipes [12]. In robotics, generalized cylinders have
been used for finding flyable paths for unmanned aerial
vehicles [27]. This is the first application we are aware
of to manipulation. In this section, we first outline the
mathematical definition and parameterized formulation of
Canal Surfaces (CS) [14], which are a simpler form of GCs,
and then extend the formulae to generalized cylinders.



A. Canal Surfaces
Let R3 be Euclidean 3−space with Cartesian coordi-

nates x1,x2,x3. Let Φu be the one-parameter pencil1
of regular implicit surfaces2 with real-valued parameter
u. Two surfaces corresponding to different values of u
intersect in a common curve. As u varies, the generated
surface is the envelope3 of the given pencil of surfaces [1].
The envelope can be defined using the following equations:

Φu : F (x1,x2,x3,u) = 0, (1)
∂F (x1,x2,x3,u)

∂u
= 0, (2)

where Φu consists of implicit C2−surfaces which are at
least twice continuously differentiable.

A canal surface, Cu, is defined as an envelope of the
one-parameter pencil of spheres and can be written as

Cu : f(x;u) := {(c(u), r(u)) ∈ R3,1|u ∈ R}, (3)

where the spheres are centered on a regular curve Γ : x =
c(u) ∈ R3 in Cartesian space. The radiuses of the spheres
are given by the function r(u)∈R, which is a C1-function.
The non-degeneracy condition is satisfied by assuming r >
0 and |ṙ| < ‖ċ‖ [12]. Γ is the directrix (spine curve) and
r(u) is called the radii function. For the one-parameter
pencil of spheres, (3) can be written as

Cu : f(x;u) := (x−c(u))2− r(u)2 = 0. (4)

B. Generalized Cylinders
Since canal surfaces are constructed using the one-

parameter pencil of spheres, the cross-sectional curve is
always a circle even though its radius can vary along
the directrix. Generalized cylinders generalize this idea
by considering an arbitrary cross-sectional curve that can
vary in both shape and size while sweeping along the
directrix Γ.

A generalized cylinder can be defined as follows,

Gu,v : f(x;u,v) := {c(u),ρ(u,v) ∈ R3,2|u,v ∈ R}, (5)

where ρ(u,v) represents the cross-sectional curve that
is defined by two parameters, u the arc length on the
directrix, and v the arc length on the cross-sectional curve.
The dependence on u reflects the fact that the cross-
section’s shape may vary along the directrix. To obtain
a parametric representation of generalized cylinders, it is
useful to employ a local coordinate system defined with
origin at each point on the directrix. A convenient choice
is the Frenet-Serret (or TNB) frame which is suitable for
describing the kinematic properties of a particle moving
along a continuous, differentiable curve in R3. TNB is an

1A pencil is a family of geometric objects sharing a common
property (e.g. spheres).

2An implicit surface is a surface in Euclidean space that can be
represented in F (x1(u),x2(u),x3(u)) = 0 form.

3An envelope is a curve/surface tangent to a family of
curves/surfaces (2D or 3D).

orthonormal basis composed of three unit vectors eT , eN ,
and eB , where eT is the unit tangent vector, and eN

and eB are the unit normal and unit binormal vectors,
respectively4.By defining the cross-section in the TNB
frame, we form a parametric representation of generalized
cylinders as follows:

Gu,v : f(u,v) = c(u) +ρx1(u,v)eN (u) +ρx2(u,v)eB(u).
(6)

As mentioned earlier, canal surfaces are formed by circu-
lar cross-sections even though they can vary in size. Gen-
eralized cylinders, on the other hand, can be formed using
cross-sectional curves with various shapes (e.g. a closed-
spline [26]). These variations make generalized cylinders a
powerful candidate for modeling complicated constraints
of trajectory-based skills captured through demonstra-
tions.

IV. Skill Learning using Generalized Cylinders
In this section, we explain how generalized cylinders can

be used to encode, reproduce, and generalize trajectory-
based skills from demonstrations. We assume that multiple
examples of a skill are demonstrated and captured as a set
of trajectories in task-space. To capture demonstrations
we use kinesthetic teaching (Fig. 3), however, alternate
demonstration techniques, such as teleoperation and shad-
owing, can be employed.

Given the set of captured demonstrations, our approach
first calculates the directrix (i.e. an average form of the
movements) and then extracts the main characteristics
of the set (i.e. spatial correlations across demonstrations)
and forms the cross-section function by identifying its
boundaries. When the generalized cylinder is constructed,
a geometric approach is used for generating new trajec-
tories starting from arbitrary initial poses. We also use
nonrigid registration [7] to generalize the encoded skill
over terminal constraints (i.e. initial and final poses).
Algorithm 1 shows a pseudo code of our approach.

A. Skill Encoding
Consider n different demonstrations of a task performed

and captured in task-space. For each demonstration, the
3D Cartesian position of the target (e.g. robot’s end-
effector) is recorded over time as ξ̂

j
= {ξj

1, ξ
j
2, ξ

j
3} ∈R3×T j ,

where T j is the number of data-points within the jth

demonstrated trajectory (j = 1 . . .n). Since T j can vary
among demonstrations, we use interpolation and resam-
pling in order to gain a frame-by-frame correspondence
mapping among the recorded demonstrations and align
them temporally. To achieve this, a set of piecewise poly-
nomials is obtained using cubic spline interpolation for

4Calculating Frenet-Serret frames for real data is prone to noise.
The reason is that at some points the derivative vector deT

du
vanishes

and the formulae cannot be applied anymore (i.e. eN cannot be
calculated). This problem can be addressed by calculating the unit
normal vector eN as the cross product of a random vector by the
unit tangent vector eT .



Fig. 3: Kinesthetic demonstration of reaching to an object
(yellow box). Task-space pose of end-effector is used as input.

Fig. 4: Different types of cross-section on the same set of data.
Point on the directrix and the effective points are shown in red
and blue respectively.

each demonstration. Then, we generate a set of temporally
aligned trajectories by resampling N new data-points from
each obtained polynomial. This process provides us with
the set of n resampled demonstrations ξ ∈ R3×N×n, each
of which consists of N data-points. An advantage of this
technique is that when the velocity and acceleration data
are unavailable, the smoothed first and second derivatives
of the obtained piecewise polynomials can be used instead.
An alternate solution is to employ Dynamic Time Warp-
ing [21].

Estimating the directrix: In order to estimate the
directrix, Γ, we calculate the directional mean (axis-wise
arithmetic mean) value for the given set of demonstrations.
Let m∈R3×N be the arithmetic mean of ξ. Note that m is
the space curve that all the cross-sections are centered on
to form a generalized cylinder (Line 4 in Algorithm 1). Al-
ternatively, the directrix can be produced using GMR [9].
In that case, GMR generates the directrix by sampling
from the learned statistical model using GMM. However,
using GMR requires defining a time vector explicitly. In
this work, we use the directional mean.

Estimating the cross-section function: Given n
demonstrations and the estimated directrix, in this step,
we explain methods for calculating the cross-section func-
tion ρ(u,v). Fig. 4 illustrates three different types of cross-
sections calculated for the same set of data. For each
point u on the directrix, we gather one corresponding
point (aligned with u on the same cross-sectional plane)
from each demonstration; we call this set the effective
points (the blue points in Fig. 4). We use the effective
points to calculate the cross-section at each step with a
smooth closed curve. The circumference of a cross-section
represents the implicit local constraints of the task (i.e.
boundaries) imposed by the set of demonstrations. In its
simplest form, we can employ (4) and construct a canal
surface which has a circular cross-section. In this case, we
calculate the distances from the point on the directrix to
the effective points and use the maximum distance as the
radius of the circle. As shown in Fig. 4(left), the estimated

Algorithm 1 Skill Learning using Generalized Cylinders
1: procedure Encoding demonstrations
2: Input:set of n demonstrations ξ ∈ R3×N×n

3: Output:Generalized cylinder Gu,v, TNB frames F(u)
4: m(u)←mean(ξ)
5: P(u,v)← estimateCSpline(ξ)
6: Gu,v,F ←makeGeneralizedCylinder(m(u),P(u,v))

7: procedure Reproducing Trajectory
8: Input:initial point p0 ∈ R3, Gu,v, F
9: Output:New trajectory ρ ∈ R3×N

10: η← ‖p0−c0‖
‖g0−c0‖

11: pi← p0 , ρ← p0
12: for each frameFi do
13: pi+1← project(pi,η,Fi+1,Fi)
14: ρ← pi+1
15: i← i+ 1

Algorithm 2 Generating GC with arbitrary cross-section
1: procedure makeGeneralizedCylinder
2: Input:directrix m(u), boundary function P(u,v)
3: Output:Generalized cylinder Gu,v, TNB frames Fu

4: for each ui do
5: {eT (ui),eN (ui),eB(ui)}← estimateFrame(m(ui))
6: F ← {eT (ui),eN (ui),eB(ui)}
7: Gu,v←m(ui) +Px(ui,v)eN (ui) +Py(ui,v)eB(ui)

cross-section bounds other points as well and therefore the
formed canal surface encloses all the demonstrations. The
radii function r(u) ∈ R produces a radius for each point
u, and v parameterizes the circumference of the circular
cross-section (e.g. v = [0 2π]). More detail on encoding
skills using canal surfaces can be found in [2]. To cover the
cross-sectional area more effectively and precisely while
maintaining the implicit local constraints of the task, we
can also construct generalized cylinders with elliptical
cross-sections (see Fig. 4(middle)). The radii function for
elliptical cross-section r(u) : R 7→ R3 produces the major
and minor axes and the rotation angle of the ellipse for
each step u.

In a more general form, we generate cross-sections by
interpolating closed splines to the data. Given a set of
break points vj , (j = 1, . . . ,n) on the interval [v0,vn]
such that v0 < v1 < .. . < vn−1 < vn, we can fit a cubic
polynomial to each interval.

p(v) = a0 +a1(v−v0) +a2(v−v0)2 +a3(v−v0)3. (7)

Each polynomial p(v) is described with four coefficients
a0,a1,a2,a3. The accumulated square root of chord length
is used to find the breaks and the number of polynomials.
Since each polynomial is C2−continuous, by applying
the boundary condition p

′′(t0) = p
′′(tn) = 0 and joining

the polynomials we construct a smooth piecewise poly-
nomial curve called a closed cubic spline. We denote the



closed-spline as P(u,v). Therefore, the obtained spline is
C2−continuous within each interval and at each inter-
polating nodes. Fig. 4(right) shows a closed-spline cross-
section constructed on the same set of effective points.

B. Skill Reproduction
During the reproduction phase, the initial position of

the end-effector p0 in the cross-sectional plane S0 (per-
pendicular to the directrix at c0) is used as input. By
drawing a ray starting from c0 and passing through p0, we
find g0, the intersection of the ray and the cross-sectional
curve (See Fig. 5). The distance between the given point
p0 to g0 reflects the similarity of the movement we want to
reproduce to the nearest neighbor on the GC. We measure
the ratio η (Line 10) by calculating the distance ‖p0c0‖ and
the distance ‖g0c0‖. We use η to generate the next pose of
the end-effector by transforming p0 from the current TNB
frame F0 to the next (Line 13). The pose on the second
frame is then adjusted by applying the measured ratio as:

p1 = η‖g1c1‖TF1,F0 . (8)

Since the ratio η is kept fixed throughout the process,
thus we call this reproduction method the ratio rule. The
ratio rule can generate new trajectories from any point
inside the generalized cylinder and serves to ensure that
the essential characteristics of the demonstrated skill are
preserved. An illustration of a single-step reproduction
process using the ratio rule can be seen in Fig. 5.
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Fig. 5: Reproduction from a random initial pose pi on the ith

cross-section Si.

Finally, as mentioned earlier, the presented approach
requires minimal parameter tuning in that only the shape
of the cross-section needs to be defined. However, we have
found the closed-spline cross-section to be most effective
in encoding a wide range of trajectories, thus serving as a
useful default for this single parameter.
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Fig. 6: A reaching skill encoded using three generalized cylin-
ders with different cross-section types.

C. Generalization
The approach described thus far enables a robot to

reproduce the skill under similar conditions (i.e. start
and goal states within the GC cross-section). However,
to have a robust model we must ensure it generalizes
to novel start and terminal states. We use a nonrigid
registration technique to achieve this goal. Given a set
of points in source geometry and a corresponding set of
points in target geometry, nonrigid registration computes
a spatial deformation function. Nonrigid registration tech-
niques have been widely used in medical imaging [19],
computer vision [6] and 3D modeling communities [22].
Recently, Schulman et al. [25] demonstrated the useful-
ness of nonrigid registration in LfD by employing it for
autonomous knot tying. Their proposed trajectory transfer
method is based on the classic Thin Plate Splines (TPS) [7]
registration algorithm extended to 3D Cartesian space,
which we also utilize here.

Consider a source geometry composed of a set of N
landmark points in 3D Cartesian space, L= {Ln ∈R3|n=
1,2, ...,N}, and a target geometry composed of the cor-
responding set of landmark points, L′ = {L′

n ∈ R3|n =
1,2, ...,N}. The nonrigid registration problem then is to
find an interpolation function z : R3 7→ R3, constrained
to map the points in L to the points in L′ . However,
there are infinitely many such interpolation functions. To
address this issue, TPS finds an interpolation function that
achieves the optimal trade-off between minimizing the dis-
tance between the landmarks and minimizing the so-called
bending energy, in effect finding a smooth interpolator. The
TPS formulation is as follows,

min
z


N∑

n=1
‖L

′
n−z(Ln)‖2 +λ

∫
R3
dx

∑
i∈{1,2,3}

‖52 zi(x)‖2F


(9)

where, 52zi represents the Hessian matrix of the ith

dimension of the image of z, λ is a regularization param-
eter, and ‖.‖F is the Frobenius norm. The integral term
represents the bending energy.

The required function z which solves (9) is known to
constitute of two parts: an affine part and a non-affine
part. The affine part approximates the overall deformation
of the geometry acting globally, while the non-affine part
represents the local residual adjustments forced by individ-
ual landmark points. With the non-affine part expanded
in terms of the basis function, z can be represented as,

z(x) = b+Ax +
N∑

n=1
wnφ(Ln,x) (10)

where, b∈R3, A∈R3×3 and wn ∈R3 are the unknown pa-
rameters while φ is the basis function defined as φ(Ln,x) =
‖Ln−x‖ for all x ∈ R3. The unknown parameters in (10)
can be found using matrix manipulation [7].

The generalization procedure is detailed in Algorithm 3.
The source geometry is composed of the locations of



the important landmarks in the workspace during the
demonstration. The corresponding target geometry is com-
posed of the new locations of the landmark points in the
environment. We first find a mapping z of the form in (10)
using the nonrigid registration method (line 4). We then
use the resulting function to map the directrix m to m′ ,
and the cross-sectional function P to P ′ (lines 5 and 6).
The new generalized cylinder G′

u,v is then found using
the mapped parameters (line 7). The ratio rule can be
employed to perform reproduction in G′

u,v.

Algorithm 3 Generalization of GC
1: procedure GeneralizeGC
2: Input:Gu,v, frames Fu, source & target landmarks L, L

′

3: Output:target G
′
u,v, target frames F

′
u

4: z← findTPS(L,L′) UsingEq. 9
5: m′(u)← z

(
m(u)

)
6: P ′(u,v)← z

(
P(u,v)

)
7: G′

u,v,F
′ ←makeGeneralizedCylinder(m′(u),P ′(u,v))

Fig. 7: Generalization of generalized cylinders over initial and
final poses using nonrigid registration.

V. Experimental Results
We conducted eight experiments to demonstrate the

GC model, as well as its reproduction and generalization
capabilities, on multiple trajectory-based skills. For each
experiment, we gathered a set of demonstrations through
kinesthetic teaching using a 6-DOF Kinova Jaco2 robotic
arm (Fig. 3). The data was recorded at 100Hz.

A. Learning and Reproduction
In this section, we present examples of five trajectory-

based skills encoded using the generalized cylinder model.
In the first experiment, we performed a reaching skill
towards an object (green sphere) from above (Fig. 6)5. We
present circular, elliptical and closed-spline cross-sections
to showcase how GCs with different cross-section types
encode the boundaries of the movement.

The demonstrations recorded for the second experiment
(Fig. 8(a)) show an example of a movement that can be

5In all of the figures, the demonstrations, directrix, and reproduc-
tions are plotted in red, blue, and magenta, respectively.

started and ended in a wide task-space but in the middle is
constrained to pass through a narrow area. This movement
resembles threading a needle or picking up an object in
the middle of the movement. The obtained GC extracts
and preserves the important characteristics of the demon-
strated skill, i.e. the precision and shape of the trajectory
throughout the movement. Given an arbitrary initial pose
of the end-effector, the robot successfully reproduces the
learned skill using the ratio rule.

The third experiment (Fig. 8(b)) shows a reach-
ing/placing skill similar to the first experiment with a
curved trajectory. The robot learns to exploit a wider
space while reaching the object while maintaining trajec-
tories with precision near the object. The accompanying
video shows the execution of this task [28].

The fourth experiment (Fig. 8(c)) shows a circular
movement around an obstacle, which is unknown to the
robot. Since the given demonstrations avoid the obstacle,
and the encoded GC guarantees that all the reproductions
of the task remain inside the cylinder, the reproduced path
is guaranteed to be collision-free. Fig. 1 (right) shows a
snapshot during the reproduction of the skill.

The fifth task represents a pick-and-place movement, in
which the robot picks up an object and places it in a box
(Fig. 8(d)). The encoded GC shows that the initial and
final poses of the movement are the main constraints of
the tasks while in the middle of the trajectory, the end-
effector can pass through a wider space while preserving
the shape of the movement. Fig. 1 (left) shows a snapshot
during the reproduction of this skill.

B. Generalization
In this section, we demonstrate the generalization ca-

pability of the proposed approach using data from the
third and fifth experiments (Fig. 7). After encoding the
skill in the third experiment, we relocated the target
three times and each time used the nonrigid registration
approach to adapt the encoded model to the new situation
as explained in Section IV-C. In the fifth experiment, we
relocated the initial pose of the object four times and
used nonrigid registration to adapt the encoded model to
the new situations. As noticeable in both generalization
experiments, the overall shape of the generalized cylinder
is preserved while accordingly expanding or contracting for
different initial and final poses. As a direct consequence of
the ratio rule for reproduction, this successfully enables
shape preservation of the reproduced trajectories. Non-
rigid registration can also be applied in the case that the
initial and target points both differ.

C. Comparison to DMP and GMM/GMR
In this section, we compare the presented approach to

two widely-used LfD techniques, DMPs and GMM/GMR.
Fig. 9 shows a comparison of both results on the data
from experiment four. For the GC, we encoded the demon-
strations using a generalized cylinder with a closed-spline
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Fig. 8: Four real-world experiments performed using our approach. The demonstrations (red) are used to extract the main
characteristics of the skills. The obtained directrix (blue) and generalized cylinders (gray) represent the skills.

cross-section and generated five reproductions from var-
ious initial poses (Fig. 9(b)). As mentioned before, our
approach requires no parameter tuning beyond specifying
the cross-section type, and by extracting the characteris-
tics of the movement it learns to avoid the obstacle. For
GMM/GMR we tuned the number of Gaussian compo-
nents (5 and 10, in figures (c) and (d), respectively), and
for DMPs, we tuned the number of attractors (5 and 10,
in figures (e) and (f), respectively). As can be seen in the
results, both DMPs and GMM/GMR can learn the skill.
In (c), and to a lesser degree in (d), GMM/GMR produces
a more angular trajectory than seen in the demonstrations.
In (e) we see the DMP deviating from the demonstrations
and colliding with the object. In all four GMM/GMR and
DMP examples, we also observe that the five different
start locations all converge to a single trajectory path.
In contrast, the trajectories reproduced by the generalized
cylinder produce a more natural set of motions that are not
identical and exploit the whole cylinder while maintaining
the important characteristics of the skill. It has to be noted
that the GC can reproduce analogous trajectories by using
the directrix directly if that behavior is desirable.

Fig. 9: Results of the comparison between GMM, DMP, and
GC. (a) five demonstrations, (b) GC and five reproductions, (c)
GMM with five components, (d) GMM with ten components,
(e) DMP with five attractors, and (f) DMP with ten attractors.

VI. Skill Refinement
The above examples show that generalized cylinders can

be used to extract, generalize and reproduce skills from
reliable human demonstrations. In practice, however, user-
provided demonstrations of a task are usually sub-optimal.
Multiple solutions to this problem have been proposed.

Argall et al. showed that behavior can be corrected by
having the teacher assign weights to each demonstration
based on its quality [3, 5]. It has also been shown that inte-
grating LfD with Reinforcement Learning can be used for
refinement [17]. However, assigning weights to demonstra-
tions is not trivial and exploring the state-action to find
an improved solution requires extensive trial and error. An
alternate approach is to refine the skill through physical
human-robot interaction [5]. In this work, we differentiate
two types of refinement. Incremental refinement occurs
during the learning process, in which the robot replays a
demonstrated trajectory (or a reproduction), the user can
modify it in some way, and then the model is retrained
on the updated data. Once a model is learned, constraint-
based refinement can be used to refine the model further
by applying new constraints. In this section, we show that
both approaches can be applied to generalized cylinders.
Note that, we have selected simple movements for analysis
and illustrative purpose.

A. Incremental Refinement
In its first form, skill refinement can be performed

during the learning process incrementally. After gathering
the set of demonstrations and encoding the skill using
generalized cylinders, the user identifies a target trajectory
(either a demonstration or a reproduction) that needs
to be modified. The user executes the target trajectory
with the robot in compliant mode, allowing the joints and
the end-effector position to be adjusted while the robot
is moving. While the robot is replaying the trajectory,
the teacher can reshape the target trajectory through
kinesthetic correction. The obtained trajectory is added to
the set and replaces the initial demonstration. Given the
new set, the algorithm updates the model and reproduces
new trajectories that inherit the applied corrections.

The following experiment illustrates this approach on
GCs. Initially, we demonstrated three simple trajecto-
ries, encoded the skill as a GC with spline cross-section
(Fig. 10(a)), and reproduced the skill using the ratio rule
(Fig. 10(b)). Now, we assume we would like the arm of the
robot to dip downwards in the middle of the first (top)
demonstration. While the robot is replaying the target
demonstration, the teacher reshapes the demonstration
through kinesthetic correction in the middle of the move-
ment. Fig. 10(c) illustrates the original and refined demon-
strations. Fig. 10(d) shows the updated GC and directrix



Fig. 10: Incremental refinement of a skill by correcting a demonstration. (a) demonstrations (red), directrix (blue) and the
obtained GC, (b) reproduction from a random pose (magenta), (c) first demonstration was refined by the teacher (red), (d)
updated GC, directrix, and a new reproduction.

Fig. 11: Constraint-based refinement of a skill by correcting a reproduction. (a) demonstrations, (b) reproduction (c) reproduction
refined by the teacher (green), (d) two new reproductions; the upper one is affected by the refinement, while the lower is not.

after replacing the target with the refined demonstration.
Given an arbitrary initial pose, the algorithm reproduces
a new trajectory that reflects the performed refinements.
This experiment shows that our approach can deal with
the refinements incrementally. Although many approaches
can benefit from a similar process [5], our representation
is visually perceivable and enables even non-experts to
observe and interpret the effect of the refinements on the
model. The accompanying video shows the execution of
this task [28].

Original reproduction

Refined reproduction
vivi-1

Fig. 12: Formation of the refinement matrix from the original
and modified reproductions.

B. Constraint-based Refinement
In this section, we show that skill refinement can also

be performed after the model has been encoded by apply-
ing new constraints. During the compliant reproduction
phase, the user observes and kinesthetically modifies the
reproduced trajectory. When this occurs, we compare the
original and the modified reproductions, calculate point-
to-point translation vectors, vi, and form a refinement
matrix, V̂ by concatenating the vectors. Fig. 12 depicts
the formation of the refinement matrix from the original
and the modified trajectories. The refinement matrix acts
as a geometric constraint on the GC that would affect
future reproductions.

Fig. 11 presents an example of this technique. The
green trajectory in Fig. 11(c) shows how the original
reproduction is refined by the teacher through kinesthetic
correction; the teacher has applied downward forces (−x3

direction) to keep the end-effector at a certain level. We
calculate the refinement matrix V̂ = [v1, . . . ,vn] ∈ R3×n

and apply it as a constraint to our ratio rule. In other
words, a reproduction remains unaffected if it is generated
below the constraining plane. This case can be seen as the
lower reproduction in Fig. 11(d). On the other hand, if
a reproduction intersects with the constraining plane, the
refinement matrix applies to it. The upper reproduction
in Fig. 11(d) shows the effect of the constraint while the
dashed line shows reproduction without applying the con-
straint. This experiment indicates that using constraint-
based refinement, the user can apply new constraints to
the model without modifying it. One of the advantages
of this approach is that the imposed constraint later can
be removed or combined with other constraints without
updating the encoded model. To our knowledge, there is
no other LfD approach with similar capabilities.

VII. Conclusion
We have presented a novel LfD approach for learn-

ing and reproducing trajectory-based skills. Our geomet-
ric representation maintains the important characteristics
and implicit boundaries of the skill and generalizes it
over the initial condition of the movement. By exploiting
the whole demonstration space, it reproduces a variety of
successful movements. In addition, the proposed approach
requires minimal parameter tuning that not only simplifies
the usage of the algorithm and makes the result consistent
but also can make the approach more convenient for
non-expert users. We also have shown that our approach
enables users to refine a learned skill both through incre-
mental and constraint-based refinement interactively.
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