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Abstract—We present a novel approach which unifies conven-
tional learning from demonstration (LfD) and motion planning
using probabilistic inference, for generalizable skill reproduction.
As a part of this approach, we also present a new probabilistic
skill model that requires minimal parameter tuning, and is more
suited for encoding skill constraints and performing inference
in an efficient manner. Preliminary experimental results on a
manipulation skill are also provided.

I. INTRODUCTION

As robots assume more collaborative roles alongside hu-
mans in dynamic environments, they must have the ability to
learn new skills and adapt them to novel scenarios (including,
changes in start/goal states, or the environment). Toward this
end, probabilistic trajectory-based LfD enables robots to learn
skills from multiple human demonstrations.

Purely probabilistic approaches [1, 2] however, attract re-
produced trajectories towards an average form of the demon-
strated motions, without regard to the initial robot state.
Relatively more generalizable probabilistic approaches [3–
5], need extensive parameter tuning to avoid under-fitting
or over-fitting. Non-parametric Gaussian process (GP) based
approaches [6, 7] overcome the extensive manual parameter
tuning problem by learning the GP hyper-parameters from
demonstrations via maximum likelihood, but fail to include
the underlying system dynamics which are crucial for cer-
tain skills. Probabilistic movement primitives (ProMPs) [8],
include system dynamics in the GP formulation and perform
inference to generalize skills over different initial and/or goal
states. However, ProMPs require a phase variable to encode
time-dependence of system states, making them prone to
temporal distortions. A major drawback for all these GP-based
methods is that they carry a high computational overhead due
to inversion of a dense kernel matrix.

Furthermore, many conventional LfD approaches are not
equipped to handle arbitrarily placed obstacles [1, 2]. Of those
that do, generated trajectories only preserve reaching an end
goal, and not other properties [3, 8, 9]. An exception is the
work of Ye and Alterovitz [10], which learns a probability
distribution from demonstrations and adapts it for the current
scenario using a sampling-based motion planner as an ad-hoc
post-processing step. Another exception [11], perhaps more
similar to ours, instead carries out trajectory optimization
over the learned distribution, first in the presence of obstacles
and then for the given via points. However, in both these
approaches, there is a certain level of redundancy induced
by carrying out skill generalization as a multi-step process
and assuming that each step is independent. Conversely, our

approach provides a unifying framework for LfD and motion
planning by carrying out generalized skill reproduction as a
one-shot process.

Our specific contributions include: (i) a probabilistic skill
model (trajectory prior) that extracts the spatial and temporal
correlations among the demonstrations and considers the un-
derlying system dynamics while requiring minimal parameter
tuning; and (ii) a novel reproduction method that finds a
continuous-time trajectory via probabilistic inference, which is
optimal with respect to the learned skill model while remaining
feasible when subjected to different scenarios.

II. TRAJECTORY OPTIMIZATION AS PROBABILISTIC
INFERENCE

We argue that for generalizable skill reproduction, LfD
should also have the same motivation as motion planning,
that is, finding trajectories that are optimal and feasible.
However, in contrast to motion planning (where optimality is
pre-specified and hard coded), LfD would require optimality
to be learned from demonstrations. We adopt the probabilistic
inference perspective on motion planning [12]. where we seek
to find the posterior distribution of the trajectory, p(θ|e) ∝
p(θ)p(e|θ), given some random binary events, e, for example,
collision avoidance, starting from a given location, reaching a
desired goal/via-point or a combination thereof. Here,

1) The Prior: p(θ) ∝ exp{− 1
2 ||θ − µ||

2
K}, defines op-

timality and is learned from demonstrations. This can also
be interpreted as learning the hyper-parameters (mean µ and
covariance K) of the trajectory distribution. We use structured
Gaussian processes to model the prior [13](Section III).

2) The Likelihood: p(e|θ) ∝ exp{− 1
2 ||h(θ, e)||

2
Σ}, en-

codes feasibility and defines the probability of the events
occurring given the trajectory. We model this as a distribution
in the exponential family [12].

We can find the maximum a posteriori (MAP) trajectory i.e.
the mode of the posterior distribution through inference,

θ∗ = argmax
θ

{
p(θ)p(e|θ)

}
(1)

This gives the desired trajectory that is optimal and feasible.
Our key insight is that skill reproduction in any new scenarios
is in fact equivalent to performing planning as inference.

Following [12], we use factor graphs [14] to represent distri-
butions and use the duality between inference and optimization
to arrive at a fast and efficient approach that solves (1).



III. TRAJECTORY PRIOR AS SKILL MODEL

We model the prior using Gaussian processes (GPs) such
that for any collection of times t = {t0, . . . , tN}, the tra-
jectory parametrized by support states θi, follows a Gaussian
distribution, θ .

=
[
θ0 . . . θN

]> ∼ N (µ,K). Unlike earlier
mentioned GP based approaches, our choice of structured
GPs not only takes care of the higher-order system dynamics
(velocities, accelerations etc.), but also allows learning and
inference to be computationally efficient.

A. Structured Heteroscedastic GP From LTV-SDE
We consider trajectories as solutions of a linear time-

varying stochastic differential equation (LTV-SDE), θ̇(t) =
A(t)θ(t) + u(t) + F(t)w(t). Here, A(t) and F(t) are time-
varying system matrices, u(t) is a bias term, with an additive
white noise process, w(t) ∼ GP(0,QC(t)δ(t− t′)). The state
θ(t), comprises of the vectorized positions and any higher-
order time derivatives (for all degrees of freedom). Taking the
first and second order moment of the solution to the LTV-
SDE, yields the desired GP [13]. Learning the GP hyper-
parameters is thus equivalent estimating underlying LTV-SDE
parameters. The inverse covariance matrix of this GP has
a sparse block diagonal structure [13] that enables efficient
learning and inference.

Usually, only the demonstrated workspace trajectories are
relevant for skills. Therefore, we choose to learn from demon-
strations, a prior distribution p(x|θ), generated by using the
LTV-SDE over the workspace state x(t), instead of that in
configuration space θ(t). However, since the problem of find-
ing the associated trajectories in configuration space becomes
under-constrained for high-degree-of-freedom robots, we add
an additional pre-specified smoothness constraint (constant-
velocity prior). This is given by p(θ) ∝ exp{− 1

2
||θ −µθ||2Kθ},

analogous to that used in [12, 15]. Eventually for skill repro-
duction, a combined prior, px(θ) = p(θ|x) ∝ p(θ)p(x|θ), is
utilized for MAP inference in (1).

B. Learned Workspace Prior
The workspace prior distribution mentioned in Section III-A

is defined as, p(x|θ) ∝ exp{− 1
2 ||C(θ) − µx||2Kx}. Here, C

imposes the robot kinematic constraints, mapping the configu-
ration space to workspace. For the skills we consider and ease
of implementation, a discrete version of the LTV-SDE above,
proved sufficient to learn the LTV-SDE parameters. We learn
these parameters from demonstration by performing maximum
likelihood estimation with ridge regression. We used an end-
effector state composed of 3D positions and linear velocities,
but our approach can be easily used to encode orientations
and angular velocities as well. Note that the learned prior
requires no manual parameter tuning and is directly available
for inference.

IV. EXPERIMENTS

We validated the proposed method on a box-opening skill
using a Kinova JACO2 6-DOF arm. We provided 6 demon-
strations using kinesthetic teaching with varying initial end-
effector states (varying initial position, zero initial velocity),

(a) An instance of box opening (b) Position prior in 3D

(c) Position prior vs time (d) Velocity Prior vs time

Fig. 1: Prior for box-opening skill. The mean is in blue with 95%
confidence interval. Demonstrations are overlayed.

(a) without obstacle (b) with obstacle

Fig. 2: Reproduced trajectories in red from different initial states.
The obstacle is in yellow and the prior position mean is in blue.

and aligned them using dynamic time warping. The end-
effector position data with time was recorded at 100Hz, and
the corresponding linear velocities were estimated by fitting
a cubic smoothing spline and differentiating. The workspace
support states were selected by uniformly re-sampling the
spline. Fig. 1 shows the learned prior distribution, p(x|θ).

The skill is composed of two primitive actions, reaching
and sliding the lid of the box. The sliding part of the skill
is highly constrained compared to the reaching part. Hence,
as shown in Fig. 1 (c)-(d), the variance in the state variables
(i.e. positions and velocities) becomes much smaller during
the sliding part. It should be noted here that the prior also
encodes the coupling between the state variables.

Fig. 2 shows the reproduced MAP trajectories θ∗, found
after conditioning the combined prior over the likelihood,
px(θ)p(e|θ). For reproduction with different initial states, the
likelihood contained the observation for the given initial state
with a very small Σ, since we are certain about the initial state.
For reproduction in a new environment with obstacles, the like-
lihood also contained the collision-free likelihood from [12],
where the obstacle cost is evaluated using a precomputed
signed distance field. Here we set the parameter Σ manually
such that it enables desired clearance of the robot from the
obstacle. In general, Σ depends on the size of the robot,
desired clearance and the environment itself. As shown in
Fig. 2, the robot is able to carry out the crucial sliding motion
from three different initial states and in the presence of a new
obstacle in the environment. Since the direction of motion is
highly relevant to this skill, encoding velocities in the prior
proved particularly beneficial.
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[5] Aleš Ude, Andrej Gams, Tamim Asfour, and Jun Morimoto.
Task-specific generalization of discrete and periodic dynamic
movement primitives. IEEE Transactions on Robotics, 26(5):
800–815, 2010.

[6] David B. Grimes, Rawichote Chalodhorn, and Rajesh PN Rao.
Dynamic imitation in a humanoid robot through nonparametric
probabilistic inference. In Robotics: Science and Systems (RSS),
pages 199–206, 2006.

[7] Markus Schneider and Wolfgang Ertel. Robot learning by
demonstration with local gaussian process regression. In 2010
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 255–260. IEEE, 2010.

[8] Alexandros Paraschos, Christian Daniel, Jan R Peters, and Ger-

hard Neumann. Probabilistic movement primitives. In Advances
in neural information processing systems, pages 2616–2624,
2013.

[9] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan
Schaal. Learning and generalization of motor skills by learning
from demonstration. In 2009 IEEE International Conference on
Robotics and Automation(ICRA), pages 763–768. IEEE, 2009.

[10] Gu Ye and Ron Alterovitz. Demonstration-guided motion
planning. In International symposium on robotics research
(ISRR), volume 5, 2011.

[11] Dorothea Koert, Guilherme Maeda, Rudolf Lioutikov, Gerhard
Neumann, and Jan Peters. Demonstration based trajectory
optimization for generalizable robot motions. In 2016 IEEE-
RAS 16th International Conference on Humanoid Robots (Hu-
manoids), pages 515–522. IEEE, 2016.

[12] Jing Dong, Mustafa Mukadam, Frank Dellaert, and Byron
Boots. Motion planning as probabilistic inference using Gaus-
sian processes and factor graphs. In Proceedings of Robotics:
Science and Systems (RSS-2016), 2016.

[13] Sean Anderson, Timothy D. Barfoot, Chi Hay Tong, and Simo
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